# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import os import errno import time import shutil import six from paddle.fluid.executor import Executor from paddle.fluid.evaluator import Evaluator from paddle.fluid.framework import Program, Parameter, default_main_program, default_startup_program, Variable from . import core __all__ = [ 'save_vars', 'save_params', 'save_persistables', 'load_vars', 'load_params', 'load_persistables', 'save_inference_model', 'load_inference_model' ] def is_parameter(var): """ Check whether the given variable is an instance of Parameter. Args: var(Variable): The variable to be checked. Returns: bool: True if the given `var` is an instance of Parameter, False if not. Examples: .. code-block:: python param = fluid.default_main_program().global_block().var('fc.w') res = fluid.io.is_parameter(param) """ return isinstance(var, Parameter) def is_persistable(var): """ Check whether the given variable is persistable. Args: var(Variable): The variable to be checked. Returns: bool: True if the given `var` is persistable False if not. Examples: .. code-block:: python param = fluid.default_main_program().global_block().var('fc.w') res = fluid.io.is_persistable(param) """ if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \ var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \ var.desc.type() == core.VarDesc.VarType.READER: return False return var.persistable def _clone_var_in_block_(block, var): assert isinstance(var, Variable) return block.create_var( name=var.name, shape=var.shape, dtype=var.dtype, type=var.type, lod_level=var.lod_level, persistable=True) def save_vars(executor, dirname, main_program=None, vars=None, predicate=None, filename=None): """ Save variables to the given directory by executor. There are two ways to specify variables to be saved: The first way, list variables in a list and assign it to the `vars`. The second way, assign the `main_program` with an existing program, then all variables in the program will be saved. The first way has a higher priority. In other words, if `vars` are assigned, the `main_program` and the `predicate` will be ignored. The `dirname` are used to specify the folder where to save variables. If you prefer to save variables in separate files in the folder `dirname`, set `filename` None; if you prefer to save all variables in a single file, use `filename` to specify it. Args: executor(Executor): The executor to run for saving variables. dirname(str): The directory path. main_program(Program|None): The program whose variables will be saved. If it is None, the default main program will be used automatically. Default: None vars(list[Variable]|None): The list that contains all variables to save. It has a higher priority than the `main_program`. Default: None predicate(function|None): If it is not None, only variables in the `main_program` that makes predicate(variable)==True will be saved. It only works when we are using the `main_program` to specify variables (In other words `vars` is None). Default: None filename(str|None): The file which to save all variables. If you prefer to save variables separately, set it to None. Default: None Returns: None Raises: TypeError: If `main_program` is not an instance of Program nor None. Examples: .. code-block:: python exe = fluid.Executor(fluid.CPUPlace()) param_path = "./my_paddle_model" # The first usage: using `main_program` to specify variables def name_has_fc(var): res = "fc" in var.name return res prog = fluid.default_main_program() fluid.io.save_vars(executor=exe, dirname=path, main_program=prog, vars=None) # All variables in `main_program` whose name includes "fc" will be saved. # And variables are going to be saved separately. # The second usage: using `vars` to specify variables var_list = [var_a, var_b, var_c] fluid.io.save_vars(executor=exe, dirname=path, vars=var_list, filename="vars_file") # var_a, var_b and var_c will be saved. And they are going to be # saved in the same file named 'var_file' in the path "./my_paddle_model". """ if vars is None: if main_program is None: main_program = default_main_program() if not isinstance(main_program, Program): raise TypeError("program should be as Program type or None") save_vars( executor, dirname=dirname, vars=list(filter(predicate, main_program.list_vars())), filename=filename) else: save_program = Program() save_block = save_program.global_block() save_var_map = {} for each_var in vars: # NOTE: don't save the variable which type is RAW if each_var.type == core.VarDesc.VarType.RAW: continue new_var = _clone_var_in_block_(save_block, each_var) if filename is None: save_block.append_op( type='save', inputs={'X': [new_var]}, outputs={}, attrs={'file_path': os.path.join(dirname, new_var.name)}) else: save_var_map[new_var.name] = new_var if filename is not None: save_var_list = [] for name in sorted(save_var_map.keys()): save_var_list.append(save_var_map[name]) save_block.append_op( type='save_combine', inputs={'X': save_var_list}, outputs={}, attrs={'file_path': os.path.join(dirname, filename)}) executor.run(save_program) def save_params(executor, dirname, main_program=None, filename=None): """ This function filters out all parameters from the give `main_program` and then save them to the folder `dirname` or the file `filename`. Use the `dirname` to specify the saving folder. If you would like to save parameters in separate files, set `filename` None; if you would like to save all parameters in a single file, use `filename` to specify the file name. NOTICE: Some variables are not Parameter while they are necessary for training. So you can NOT save and continue your training just by `save_params()` and `load_params()`. Please use `save_persistables()` and `load_persistables()` instead. Args: executor(Executor): The executor to run for saving parameters. dirname(str): The saving directory path. main_program(Program|None): The program whose parameters will be saved. If it is None, the default main program will be used automatically. Default: None filename(str|None): The file to save all parameters. If you prefer to save parameters in differnet files, set it to None. Default: None Returns: None Examples: .. code-block:: python exe = fluid.Executor(fluid.CPUPlace()) param_path = "./my_paddle_model" prog = fluid.default_main_program() fluid.io.save_params(executor=exe, dirname=param_path, main_program=None) """ save_vars( executor, dirname=dirname, main_program=main_program, vars=None, predicate=is_parameter, filename=filename) def save_persistables(executor, dirname, main_program=None, filename=None): """ This function filters out all variables with `persistable==True` from the give `main_program` and then saves these variables to the folder `dirname` or file `filename`. The `dirname` is used to specify the folder where persistable variables are going to be saved. If you would like to save variables in separate files, set `filename` None; if you would like to save all variables in a single file, use `filename` to specify the file name. Args: executor(Executor): The executor to run for saving persistable variables. dirname(str): The directory path. main_program(Program|None): The program whose persistbale variables will be saved. If it is None, the default main program will be used automatically. Default: None filename(str|None): The file to saved all variables. If you prefer to save variables in differnet files, set it to None. Default: None Returns: None Examples: .. code-block:: python exe = fluid.Executor(fluid.CPUPlace()) param_path = "./my_paddle_model" prog = fluid.default_main_program() fluid.io.save_persistables(executor=exe, dirname=param_path, main_program=None) """ save_vars( executor, dirname=dirname, main_program=main_program, vars=None, predicate=is_persistable, filename=filename) def load_vars(executor, dirname, main_program=None, vars=None, predicate=None, filename=None): """ Load variables from the given directory by executor. There are two ways to specify variables to be loaded: The first way, list variables in a list and assign it to the `vars`. The second way, assign the `main_program` with an existing program, then all variables in the program will be loaded. The first way has a higher priority. In other words if `vars` are assigned, the `main_program` and the `predicate` will be ignored. The `dirname` are used to specify the folder where to load variables. If variables were saved in separate files in the folder `dirname`, set `filename` None; if all variables were saved in a single file, use `filename` to specify it. Args: executor(Executor): The executor to run for loading variables. dirname(str): The directory path. main_program(Program|None): The program whose variables will be loaded. If it is None, the default main program will be used automatically. Default: None vars(list[Variable]|None): The list that contains all variables to load. It has a higher priority than the `main_program`. Default: None predicate(function|None): If it is not None, only variables in the `main_program` that makes predicate(variable)==True will be loaded. It only works when we are using the `main_program` to specify variables (In other words `vars` is None). Default: None filename(str|None): The file which saved all required variables. If variables were saved in differnet files, set it to None. Default: None Returns: None Raises: TypeError: If `main_program` is not an instance of Program nor None. Examples: .. code-block:: python exe = fluid.Executor(fluid.CPUPlace()) param_path = "./my_paddle_model" # The first usage: using `main_program` to specify variables def name_has_fc(var): res = "fc" in var.name return res prog = fluid.default_main_program() fluid.io.load_vars(executor=exe, dirname=path, main_program=prog, vars=None) # All variables in `main_program` whose name includes "fc" will be loaded. # And all the variables are supposed to have been saved in differnet files. # The second usage: using `vars` to specify variables var_list = [var_a, var_b, var_c] fluid.io.load_vars(executor=exe, dirname=path, vars=var_list, filename="vars_file") # var_a, var_b and var_c will be loaded. And they are supposed to haven # been saved in the same file named 'var_file' in the path "./my_paddle_model". """ if vars is None: if main_program is None: main_program = default_main_program() if not isinstance(main_program, Program): raise TypeError("program's type should be Program") load_vars( executor, dirname=dirname, main_program=main_program, vars=list(filter(predicate, main_program.list_vars())), filename=filename) else: load_prog = Program() load_block = load_prog.global_block() load_var_map = {} for each_var in vars: assert isinstance(each_var, Variable) if each_var.type == core.VarDesc.VarType.RAW: continue new_var = _clone_var_in_block_(load_block, each_var) if filename is None: load_block.append_op( type='load', inputs={}, outputs={'Out': [new_var]}, attrs={'file_path': os.path.join(dirname, new_var.name)}) else: load_var_map[new_var.name] = new_var if filename is not None: load_var_list = [] for name in sorted(load_var_map.keys()): load_var_list.append(load_var_map[name]) load_block.append_op( type='load_combine', inputs={}, outputs={"Out": load_var_list}, attrs={'file_path': os.path.join(dirname, filename)}) executor.run(load_prog) if main_program is None: main_program = default_main_program() # load slice vars on pserver, if have it. _load_slice_up_vars(executor, dirname, main_program._slice_vars_and_attrs) def load_params(executor, dirname, main_program=None, filename=None): """ This function filters out all parameters from the give `main_program` and then trys to load these parameters from the folder `dirname` or the file `filename`. Use the `dirname` to specify the folder where parameters were saved. If parameters were saved in separate files in the folder `dirname`, set `filename` None; if all parameters were saved in a single file, use `filename` to specify the file name. NOTICE: Some variables are not Parameter while they are necessary for training. So you can NOT save and continue your training just by `save_params()` and `load_params()`. Please use `save_persistables()` and `load_persistables()` instead. Args: executor(Executor): The executor to run for loading parameters. dirname(str): The directory path. main_program(Program|None): The program whose parameters will be loaded. If it is None, the default main program will be used automatically. Default: None filename(str|None): The file which saved all parameters. If parameters were saved in differnet files, set it to None. Default: None Returns: None Examples: .. code-block:: python exe = fluid.Executor(fluid.CPUPlace()) param_path = "./my_paddle_model" prog = fluid.default_main_program() fluid.io.load_params(executor=exe, dirname=param_path, main_program=None) """ load_vars( executor, dirname=dirname, main_program=main_program, predicate=is_parameter, filename=filename) def load_persistables(executor, dirname, main_program=None, filename=None): """ This function filters out all variables with `persistable==True` from the give `main_program` and then trys to load these variables from the folder `dirname` or the file `filename`. Use the `dirname` to specify the folder where persistable variables were saved. If variables were saved in separate files, set `filename` None; if all variables were saved in a single file, use `filename` to specify the file name. Args: executor(Executor): The executor to run for loading persistable variables. dirname(str): The directory path. main_program(Program|None): The program whose persistbale variables will be loaded. If it is None, the default main program will be used automatically. Default: None filename(str|None): The file which saved all variables. If variables were saved in differnet files, set it to None. Default: None Returns: None Examples: .. code-block:: python exe = fluid.Executor(fluid.CPUPlace()) param_path = "./my_paddle_model" prog = fluid.default_main_program() fluid.io.load_persistables(executor=exe, dirname=param_path, main_program=None) """ load_vars( executor, dirname=dirname, main_program=main_program, predicate=is_persistable, filename=filename) def prepend_feed_ops(inference_program, feed_target_names, feed_holder_name='feed'): if len(feed_target_names) == 0: return global_block = inference_program.global_block() feed_var = global_block.create_var( name=feed_holder_name, type=core.VarDesc.VarType.FEED_MINIBATCH, persistable=True) for i, name in enumerate(feed_target_names): out = global_block.var(name) global_block._prepend_op( type='feed', inputs={'X': [feed_var]}, outputs={'Out': [out]}, attrs={'col': i}) def append_fetch_ops(inference_program, fetch_target_names, fetch_holder_name='fetch'): global_block = inference_program.global_block() fetch_var = global_block.create_var( name=fetch_holder_name, type=core.VarDesc.VarType.FETCH_LIST, persistable=True) for i, name in enumerate(fetch_target_names): global_block.append_op( type='fetch', inputs={'X': [name]}, outputs={'Out': [fetch_var]}, attrs={'col': i}) def save_inference_model(dirname, feeded_var_names, target_vars, executor, main_program=None, model_filename=None, params_filename=None, export_for_deployment=True): """ Prune the given `main_program` to build a new program especially for inference, and then save it and all related parameters to given `dirname` by the `executor`. Args: dirname(str): The directory path to save the inference model. feeded_var_names(list[str]): Names of variables that need to be feeded data during inference. target_vars(list[Variable]): Variables from which we can get inference results. executor(Executor): The executor that saves the inference model. main_program(Program|None): The original program, which will be pruned to build the inference model. If is setted None, the default main program will be used. Default: None. model_filename(str|None): The name of file to save the inference program itself. If is setted None, a default filename `__model__` will be used. params_filename(str|None): The name of file to save all related parameters. If it is setted None, parameters will be saved in separate files . export_for_deployment(bool): If True, programs are modified to only support direct inference deployment. Otherwise, more information will be stored for flexible optimization and re-training. Currently, only True is supported. Returns: None Raises: ValueError: If `feed_var_names` is not a list of basestring. ValueError: If `target_vars` is not a list of Variable. Examples: .. code-block:: python exe = fluid.Executor(fluid.CPUPlace()) path = "./infer_model" fluid.io.save_inference_model(dirname=path, feeded_var_names=['img'], target_vars=[predict_var], executor=exe) # In this exsample, the function will prune the default main program # to make it suitable for infering the `predict_var`. The pruned # inference program is going to be saved in the "./infer_model/__model__" # and parameters are going to be saved in separate files under folder # "./infer_model". """ if isinstance(feeded_var_names, six.string_types): feeded_var_names = [feeded_var_names] elif export_for_deployment: if len(feeded_var_names) > 0: # TODO(paddle-dev): polish these code blocks if not (bool(feeded_var_names) and all( isinstance(name, six.string_types) for name in feeded_var_names)): raise ValueError("'feed_var_names' should be a list of str.") if isinstance(target_vars, Variable): target_vars = [target_vars] elif export_for_deployment: if not (bool(target_vars) and all( isinstance(var, Variable) for var in target_vars)): raise ValueError("'target_vars' should be a list of Variable.") if main_program is None: main_program = default_main_program() # if there is lookup table, the trainer 0 will notify all pserver to save. if main_program._is_distributed and main_program._is_chief and main_program._distributed_lookup_table: lookup_table_filename = os.path.join(dirname, "__lookup_table__") _save_lookup_tables_by_notify(executor, lookup_table_filename, main_program._distributed_lookup_table, main_program._endpoints) if not os.path.isdir(dirname): os.makedirs(dirname) if model_filename is not None: model_basename = os.path.basename(model_filename) else: model_basename = "__model__" model_basename = os.path.join(dirname, model_basename) # When export_for_deployment is true, we modify the program online so that # it can only be loaded for inference directly. If it's false, the whole # original program and related meta are saved so that future usage can be # more flexible. if export_for_deployment: main_program = main_program.clone() global_block = main_program.global_block() for i, op in enumerate(global_block.ops): op.desc.set_is_target(False) if op.type == "feed" or op.type == "fetch": global_block._remove_op(i) main_program.desc.flush() main_program = main_program._prune(targets=target_vars) main_program = main_program._inference_optimize(prune_read_op=True) fetch_var_names = [v.name for v in target_vars] prepend_feed_ops(main_program, feeded_var_names) append_fetch_ops(main_program, fetch_var_names) with open(model_basename, "wb") as f: f.write(main_program.desc.serialize_to_string()) else: # TODO(panyx0718): Save more information so that it can also be used # for training and more flexible post-processing. with open(model_basename + ".main_program", "wb") as f: f.write(main_program.desc.serialize_to_string()) if params_filename is not None: params_filename = os.path.basename(params_filename) save_persistables(executor, dirname, main_program, params_filename) def load_inference_model(dirname, executor, model_filename=None, params_filename=None, pserver_endpoints=None): """ Load inference model from a directory Args: dirname(str): The directory path executor(Executor): The executor to run for loading inference model. model_filename(str|None): The name of file to load inference program. If it is None, the default filename '__model__' will be used. Default: None params_filename(str|None): The name of file to load all parameters. It is only used for the case that all parameters were saved in a single binary file. If parameters were saved in separate files, set it as 'None'. pserver_endpoints(list|None): This only need by distributed inference. When use distributed look up table in training, We also need it in inference.The parameter is a list of pserver endpoints. Returns: tuple: The return of this function is a tuple with three elements: (program, feed_target_names, fetch_targets). The `program` is a Program, it's the program for inference. The `feed_target_names` is a list of str, it contains Names of variables that need to feed data in the inference program. The `fetch_targets` is a list of Variable. It contains variables from which we can get inference results. Raises: ValueError: If `dirname` is not a existing directory. Examples: .. code-block:: python exe = fluid.Executor(fluid.CPUPlace()) path = "./infer_model" endpoints = ["127.0.0.1:2023","127.0.0.1:2024"] [inference_program, feed_target_names, fetch_targets] = fluid.io.load_inference_model(dirname=path, executor=exe) results = exe.run(inference_program, feed={feed_target_names[0]: tensor_img}, fetch_list=fetch_targets) # if we need lookup table, we will use: fluid.io.load_inference_model(dirname=path, executor=exe, pserver_endpoints=endpoints) # In this exsample, the inference program was saved in the # "./infer_model/__model__" and parameters were saved in # separate files in ""./infer_model". # After getting inference program, feed target names and # fetch targets, we can use an Executor to run the inference # program to get the inference result. """ if not os.path.isdir(dirname): raise ValueError("There is no directory named '%s'", dirname) if model_filename is not None: model_filename = os.path.basename(model_filename) else: model_filename = "__model__" model_filename = os.path.join(dirname, model_filename) if params_filename is not None: params_filename = os.path.basename(params_filename) with open(model_filename, "rb") as f: program_desc_str = f.read() program = Program.parse_from_string(program_desc_str) if not core._is_program_version_supported(program._version()): raise ValueError("Unsupported program version: %d\n" % program._version()) # Binary data also need versioning. load_persistables(executor, dirname, program, params_filename) if pserver_endpoints: program = _endpoints_replacement(program, pserver_endpoints) feed_target_names = program.desc.get_feed_target_names() fetch_target_names = program.desc.get_fetch_target_names() fetch_targets = [ program.global_block().var(name) for name in fetch_target_names ] return [program, feed_target_names, fetch_targets] def _save_lookup_tables_by_notify(executor, dirname, lookup_table, pserver_endpoints): """ This function will send checkpoint notify message from Trainer 0 to all the pservers. The checkpoint notify message contains lookup table name, the absolute path on pserver to save lookup_table. Args: executor(Executor): The executor to run for send checkpoint notify. dirname(str): The folder where to save. lookup_table(string): the lookup table name, when use distribute lookup table, we can get lookup table name by DistributeTranspiler. table_name ps_endpoint_list(list): the parameter server ip:port list. when use distribute lookup table, we can get ps_endpoint_list by distribute arguments. Return: None Examples: .. code-block:: python exe = fluid.Executor(fluid.CPUPlace()) param_path = "./my_paddle_model" table_name = "share_w" ps_endpoints = ["127.0.0.1:6000","127.0.0.1:6001"] _save_pserver_vars_by_notify(executor=exe, dirname=param_path, lookup_table=table_name, pserver_endpoints=ps_endpoints) """ pserver_notify_program = Program() pserver_notify_block = pserver_notify_program.global_block() attrs = {} attrs['epmap'] = pserver_endpoints attrs['dir'] = dirname attrs['lookup_table'] = lookup_table pserver_notify_block.append_op( type='checkpoint_notify', inputs={}, outputs={}, attrs=attrs) executor.run(pserver_notify_program) def _endpoints_replacement(program, endpoints): ENDPOINT_MAP = "epmap" for op in program.global_block().ops: if op.has_attr(ENDPOINT_MAP): op.set_attr(ENDPOINT_MAP, endpoints) program._sync_with_cpp() return program def get_parameter_value(para, executor): """ Get the LoDTensor value of the given parameter. Args: para(Parameter): The parameter to get value from. executor(Executor): The executor to run for retrieving the value. Returns: numpy.array: The given parameter's values. Raises: AssertionError: If the `para` is not an instance of Parameter. Examples: .. code-block:: python exe = fluid.Executor(fluid.CPUPlace()) param = fluid.default_main_program().global_block().var('fc.w') p = fluid.io.get_parameter_value(param, exe) """ assert is_parameter(para) get_program = Program() block = get_program.global_block() new_var = _clone_var_in_block_(block, para) return executor.run(get_program, feed={}, fetch_list=[new_var])[0] def get_parameter_value_by_name(name, executor, program=None): """ Get the LoDTensor value of a certain parameter by its name. Args: name(str): The parameter's name. executor(Executor): The executor to run for retrieving the value. program(Program | None): The program where to find the parameter. If it's set to be None, the function will try to find the parameter in the default main program. Returns: numpy.array: The parameter's values. Raises: TypeError: If given `name` is not an instance of basestring. TypeError: If the parameter with the given name doesn't exist. AssertionError: If there is a varibale named `name` in the given program but it is not a Parameter. Examples: .. code-block:: python exe = fluid.Executor(fluid.CPUPlace()) p = fluid.io.get_parameter_value('fc.w', exe) """ if program is None: program = default_main_program() var = program.global_block().var(name) return get_parameter_value(var, executor) def _load_slice_up_vars(executor, dirname, slice_vars_and_attrs): if not slice_vars_and_attrs: return load_prog = Program() load_block = load_prog.global_block() need_delete_vars = [] for var_tuple in slice_vars_and_attrs: orig_var = var_tuple[0] start = var_tuple[1] slice_var = var_tuple[2] end = start + slice_var.shape[0] clone_orig_var = load_block.create_var( name=orig_var.name, type=orig_var.type, shape=orig_var.shape, dtype=orig_var.dtype, persistable=True) clone_slice_var = load_block.create_var( name=slice_var.name, type=slice_var.type, shape=slice_var.shape, dtype=slice_var.dtype, persistable=True) load_block.append_op( type='load', inputs={}, outputs={'Out': [clone_orig_var]}, attrs={'file_path': os.path.join(dirname, clone_orig_var.name)}) load_block.append_op( type="slice", inputs={'Input': clone_orig_var}, outputs={'Out': clone_slice_var}, attrs={'axes': [0], 'starts': [start], 'ends': [end]}) need_delete_vars.append(clone_orig_var) load_block.append_op( type='delete_var', inputs={'X': need_delete_vars}, ) executor.run(load_prog)