/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/fluid/operators/affine_grid_op.h" #include #include "paddle/fluid/framework/op_registry.h" #ifdef PADDLE_WITH_CUDA #include "paddle/fluid/platform/cudnn_helper.h" #endif namespace paddle { namespace operators { using Tensor = framework::Tensor; template struct Linspace { framework::Tensor operator()(T start, T end, int count, const framework::ExecutionContext& ctx) { Tensor numbers; T* number_data = numbers.mutable_data({count}, platform::CPUPlace()); T slice = (end - start) / (T)(count - 1); for (int i = 0; i < count; ++i) { number_data[i] = start + (T)i * slice; } return numbers; } }; class AffineGridOp : public framework::OperatorWithKernel { public: using framework::OperatorWithKernel::OperatorWithKernel; void InferShape(framework::InferShapeContext* ctx) const override { PADDLE_ENFORCE(ctx->HasInput("Theta"), "Input(Theta) of AffineGridOp should not be null."); PADDLE_ENFORCE(ctx->HasOutput("Output"), "Output(Output) of AffineGridOp should not be null."); auto theta_dims = ctx->GetInputDim("Theta"); PADDLE_ENFORCE(theta_dims.size() == 3, "AffineGrid's Input(Theta) should be 3-D tensor."); auto output_shape = ctx->Attrs().Get>("output_shape"); if (output_shape.size() == 0) { PADDLE_ENFORCE(ctx->HasInput("OutputShape"), "Input(OutputShape) of AffineGridOp should not be null if " "attr(output_shape) is not configured."); auto output_shape_dims = ctx->GetInputDim("OutputShape"); PADDLE_ENFORCE(output_shape_dims.size() == 1, "AffineGrid's Input(OutputShape) should be 1-D tensor."); } else { PADDLE_ENFORCE(output_shape.size() == 4, "The size of attr(output_shape) should be 4."); } PADDLE_ENFORCE(theta_dims[1] == 2, "Input(theta) dims[1] should be 2."); PADDLE_ENFORCE(theta_dims[2] == 3, "Input(theta) dims[2] should be 3."); // N * H * W * 2 ctx->SetOutputDim("Output", framework::make_ddim({theta_dims[0], -1, -1, 2})); ctx->ShareLoD("Theta", "Output"); } protected: framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext& ctx) const override { framework::LibraryType library{framework::LibraryType::kPlain}; #ifdef PADDLE_WITH_CUDA if (platform::CanCUDNNBeUsed(ctx)) { library = framework::LibraryType::kCUDNN; } #endif auto data_type = framework::ToDataType(ctx.Input("Theta")->type()); return framework::OpKernelType(data_type, ctx.GetPlace(), framework::DataLayout::kAnyLayout, library); } }; class AffineGridOpMaker : public framework::OpProtoAndCheckerMaker { public: void Make() override { AddInput( "Theta", "(Tensor) A batch of affine transform parameters with shape [N, 2, 3]. " "It is used to transform coordinate (x_0, y_0) to coordinate (x_1, " "y_1)."); AddInput("OutputShape", "(Tensor) The shape of target image with format [N, C, H, W].") .AsDispensable(); AddOutput("Output", "(Tensor) Output Tensor with shape [N, H, W, 2]."); AddAttr( "use_cudnn", "(bool, default false) Only used in cudnn kernel, need install cudnn") .SetDefault(true); AddAttr>( "output_shape", "The target output image shape with format [N, C, H, W].") .SetDefault(std::vector()); AddComment(R"DOC( It generates a grid of (x,y) coordinates using the parameters of the affine transformation that correspond to a set of points where the input feature map should be sampled to produce the transformed output feature map. Given: Theta = [[[x_11, x_12, x_13] [x_14, x_15, x_16]] [[x_21, x_22, x_23] [x_24, x_25, x_26]]] OutputShape = [2, 3, 5, 5] Step 1: Generate relative coordinates according to OutputShape. The values of relative coordinates are in the interval between -1 and 1. The shape of the relative coordinates is [2, H, W] as below: C = [[[-1. -1. -1. -1. -1. ] [-0.5 -0.5 -0.5 -0.5 -0.5] [ 0. 0. 0. 0. 0. ] [ 0.5 0.5 0.5 0.5 0.5] [ 1. 1. 1. 1. 1. ]] [[-1. -0.5 0. 0.5 1. ] [-1. -0.5 0. 0.5 1. ] [-1. -0.5 0. 0.5 1. ] [-1. -0.5 0. 0.5 1. ] [-1. -0.5 0. 0.5 1. ]]] C[0] is the coordinates in height axis and C[1] is the coordinates in width axis. Step2: Tanspose and reshape C to shape [H * W, 2] and append ones to last dimension. The we get: C_ = [[-1. -1. 1. ] [-0.5 -1. 1. ] [ 0. -1. 1. ] [ 0.5 -1. 1. ] [ 1. -1. 1. ] [-1. -0.5 1. ] [-0.5 -0.5 1. ] [ 0. -0.5 1. ] [ 0.5 -0.5 1. ] [ 1. -0.5 1. ] [-1. 0. 1. ] [-0.5 0. 1. ] [ 0. 0. 1. ] [ 0.5 0. 1. ] [ 1. 0. 1. ] [-1. 0.5 1. ] [-0.5 0.5 1. ] [ 0. 0.5 1. ] [ 0.5 0.5 1. ] [ 1. 0.5 1. ] [-1. 1. 1. ] [-0.5 1. 1. ] [ 0. 1. 1. ] [ 0.5 1. 1. ] [ 1. 1. 1. ]] Step3: Compute output by equation $$Output[i] = C_ * Theta[i]^T$$ )DOC"); } }; class AffineGridOpGrad : public framework::OperatorWithKernel { public: using framework::OperatorWithKernel::OperatorWithKernel; void InferShape(framework::InferShapeContext* ctx) const override { auto theta_dims = ctx->GetInputDim("Theta"); if (ctx->HasOutput(framework::GradVarName("Theta"))) { ctx->SetOutputDim(framework::GradVarName("Theta"), theta_dims); } } protected: framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext& ctx) const override { framework::LibraryType library_{framework::LibraryType::kPlain}; #ifdef PADDLE_WITH_CUDA if (platform::CanCUDNNBeUsed(ctx)) { library_ = framework::LibraryType::kCUDNN; } #endif return framework::OpKernelType( framework::ToDataType(ctx.Input("Theta")->type()), ctx.GetPlace(), framework::DataLayout::kAnyLayout, library_); } }; class AffineGridGradMaker : public framework::SingleGradOpDescMaker { public: using framework::SingleGradOpDescMaker::SingleGradOpDescMaker; protected: std::unique_ptr Apply() const override { auto* op = new framework::OpDesc(); op->SetType("affine_grid_grad"); op->SetInput("Theta", Input("Theta")); op->SetInput("OutputShape", Input("OutputShape")); op->SetInput(framework::GradVarName("Output"), OutputGrad("Output")); op->SetAttrMap(Attrs()); op->SetOutput(framework::GradVarName("Theta"), InputGrad("Theta")); return std::unique_ptr(op); } }; } // namespace operators } // namespace paddle namespace ops = paddle::operators; REGISTER_OPERATOR(affine_grid, ops::AffineGridOp, ops::AffineGridOpMaker, ops::AffineGridGradMaker); REGISTER_OPERATOR(affine_grid_grad, ops::AffineGridOpGrad); REGISTER_OP_CPU_KERNEL( affine_grid, ops::AffineGridOpKernel, ops::AffineGridOpKernel); REGISTER_OP_CPU_KERNEL( affine_grid_grad, ops::AffineGridGradOpKernel, ops::AffineGridGradOpKernel);