# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function from ppdet.core.workspace import register, create from .meta_arch import BaseArch import paddle __all__ = ['RetinaNet'] @register class RetinaNet(BaseArch): __category__ = 'architecture' def __init__(self, backbone, neck, head): super(RetinaNet, self).__init__() self.backbone = backbone self.neck = neck self.head = head @classmethod def from_config(cls, cfg, *args, **kwargs): backbone = create(cfg['backbone']) kwargs = {'input_shape': backbone.out_shape} neck = create(cfg['neck'], **kwargs) head = create(cfg['head']) return { 'backbone': backbone, 'neck': neck, 'head': head} def _forward(self): body_feats = self.backbone(self.inputs) neck_feats = self.neck(body_feats) head_outs = self.head(neck_feats) if not self.training: im_shape = self.inputs['im_shape'] scale_factor = self.inputs['scale_factor'] bboxes, bbox_num = self.head.post_process(head_outs, im_shape, scale_factor) return bboxes, bbox_num return head_outs def get_loss(self): loss = dict() head_outs = self._forward() loss_retina = self.head.get_loss(head_outs, self.inputs) loss.update(loss_retina) total_loss = paddle.add_n(list(loss.values())) loss.update(loss=total_loss) return loss def get_pred(self): bbox_pred, bbox_num = self._forward() output = dict(bbox=bbox_pred, bbox_num=bbox_num) return output