# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. # #Licensed under the Apache License, Version 2.0 (the "License"); #you may not use this file except in compliance with the License. #You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # #Unless required by applicable law or agreed to in writing, software #distributed under the License is distributed on an "AS IS" BASIS, #WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #See the License for the specific language governing permissions and #limitations under the License. import unittest import numpy as np from op_test import OpTest def calc_precision(tp_count, fp_count): if tp_count > 0.0 or fp_count > 0.0: return tp_count / (tp_count + fp_count) return 1.0 def calc_recall(tp_count, fn_count): if tp_count > 0.0 or fn_count > 0.0: return tp_count / (tp_count + fn_count) return 1.0 def calc_f1_score(precision, recall): if precision > 0.0 or recall > 0.0: return 2 * precision * recall / (precision + recall) return 0.0 def get_states(idxs, labels, cls_num, weights=None): ins_num = idxs.shape[0] # TP FP TN FN states = np.zeros((cls_num, 4)).astype('float32') for i in xrange(ins_num): w = weights[i] if weights is not None else 1.0 idx = idxs[i][0] label = labels[i][0] if idx == label: states[idx][0] += w for j in xrange(cls_num): states[j][2] += w states[idx][2] -= w else: states[label][3] += w states[idx][1] += w for j in xrange(cls_num): states[j][2] += w states[label][2] -= w states[idx][2] -= w return states def compute_metrics(states, cls_num): total_tp_count = 0.0 total_fp_count = 0.0 total_fn_count = 0.0 macro_avg_precision = 0.0 macro_avg_recall = 0.0 for i in xrange(cls_num): total_tp_count += states[i][0] total_fp_count += states[i][1] total_fn_count += states[i][3] macro_avg_precision += calc_precision(states[i][0], states[i][1]) macro_avg_recall += calc_recall(states[i][0], states[i][3]) metrics = [] macro_avg_precision /= cls_num macro_avg_recall /= cls_num metrics.append(macro_avg_precision) metrics.append(macro_avg_recall) metrics.append(calc_f1_score(macro_avg_precision, macro_avg_recall)) micro_avg_precision = calc_precision(total_tp_count, total_fp_count) metrics.append(micro_avg_precision) micro_avg_recall = calc_recall(total_tp_count, total_fn_count) metrics.append(micro_avg_recall) metrics.append(calc_f1_score(micro_avg_precision, micro_avg_recall)) return np.array(metrics).astype('float32') class TestPrecisionRecallOp_0(OpTest): def setUp(self): self.op_type = "precision_recall" ins_num = 64 cls_num = 10 max_probs = np.random.uniform(0, 1.0, (ins_num, 1)).astype('float32') idxs = np.random.choice(xrange(cls_num), ins_num).reshape( (ins_num, 1)).astype('int32') labels = np.random.choice(xrange(cls_num), ins_num).reshape( (ins_num, 1)).astype('int32') states = get_states(idxs, labels, cls_num) metrics = compute_metrics(states, cls_num) self.attrs = {'class_number': cls_num} self.inputs = {'MaxProbs': max_probs, 'Indices': idxs, 'Labels': labels} self.outputs = { 'BatchMetrics': metrics, 'AccumMetrics': metrics, 'AccumStatesInfo': states } def test_check_output(self): self.check_output() class TestPrecisionRecallOp_1(OpTest): def setUp(self): self.op_type = "precision_recall" ins_num = 64 cls_num = 10 max_probs = np.random.uniform(0, 1.0, (ins_num, 1)).astype('float32') idxs = np.random.choice(xrange(cls_num), ins_num).reshape( (ins_num, 1)).astype('int32') weights = np.random.uniform(0, 1.0, (ins_num, 1)).astype('float32') labels = np.random.choice(xrange(cls_num), ins_num).reshape( (ins_num, 1)).astype('int32') states = get_states(idxs, labels, cls_num, weights) metrics = compute_metrics(states, cls_num) self.attrs = {'class_number': cls_num} self.inputs = { 'MaxProbs': max_probs, 'Indices': idxs, 'Labels': labels, 'Weights': weights } self.outputs = { 'BatchMetrics': metrics, 'AccumMetrics': metrics, 'AccumStatesInfo': states } def test_check_output(self): self.check_output() class TestPrecisionRecallOp_2(OpTest): def setUp(self): self.op_type = "precision_recall" ins_num = 64 cls_num = 10 max_probs = np.random.uniform(0, 1.0, (ins_num, 1)).astype('float32') idxs = np.random.choice(xrange(cls_num), ins_num).reshape( (ins_num, 1)).astype('int32') weights = np.random.uniform(0, 1.0, (ins_num, 1)).astype('float32') labels = np.random.choice(xrange(cls_num), ins_num).reshape( (ins_num, 1)).astype('int32') states = np.random.randint(0, 30, (cls_num, 4)).astype('float32') accum_states = get_states(idxs, labels, cls_num, weights) batch_metrics = compute_metrics(accum_states, cls_num) accum_states += states accum_metrics = compute_metrics(accum_states, cls_num) self.attrs = {'class_number': cls_num} self.inputs = { 'MaxProbs': max_probs, 'Indices': idxs, 'Labels': labels, 'Weights': weights, 'StatesInfo': states } self.outputs = { 'BatchMetrics': batch_metrics, 'AccumMetrics': accum_metrics, 'AccumStatesInfo': accum_states } def test_check_output(self): self.check_output() if __name__ == '__main__': unittest.main()