# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. # #Licensed under the Apache License, Version 2.0 (the "License"); #you may not use this file except in compliance with the License. #You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # #Unless required by applicable law or agreed to in writing, software #distributed under the License is distributed on an "AS IS" BASIS, #WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #See the License for the specific language governing permissions and #limitations under the License. import unittest import numpy as np from op_test import OpTest class TestHingeLossOp(OpTest): def setUp(self): self.op_type = 'hinge_loss' samples_num = 64 logits = np.random.uniform(-10, 10, (samples_num, 1)).astype('float32') labels = np.random.randint(0, 2, (samples_num, 1)).astype('float32') self.inputs = { 'Logits': logits, 'Labels': labels, } loss = np.maximum(1.0 - (2 * labels - 1) * logits, 0) self.outputs = {'Loss': loss} def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(['Logits'], 'Loss', max_relative_error=0.008) if __name__ == '__main__': unittest.main()