# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. # #Licensed under the Apache License, Version 2.0 (the "License"); #you may not use this file except in compliance with the License. #You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # #Unless required by applicable law or agreed to in writing, software #distributed under the License is distributed on an "AS IS" BASIS, #WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #See the License for the specific language governing permissions and #limitations under the License. import paddle.v2.fluid as fluid import paddle.v2.fluid.layers as layers import op_test import numpy import unittest import paddle.v2.fluid.framework as framework class TestAssignValueOp(op_test.OpTest): def setUp(self): self.op_type = "assign_value" x = numpy.random.random(size=(2, 5)).astype(numpy.float32) self.inputs = {} self.outputs = {'Out': x} self.attrs = { 'shape': x.shape, 'dtype': framework.convert_np_dtype_to_dtype_(x.dtype), 'fp32_values': [float(v) for v in x.flat] } def test_forward(self): self.check_output() def test_assign(self): val = ( -100 + 200 * numpy.random.random(size=(2, 5))).astype(numpy.int32) x = layers.create_tensor(dtype="float32") layers.assign(input=val, output=x) exe = fluid.Executor(fluid.CPUPlace()) fetched_x = exe.run(fluid.default_main_program(), feed={}, fetch_list=[x])[0] self.assertTrue( numpy.array_equal(fetched_x, val), "fetch_x=%s val=%s" % (fetched_x, val)) self.assertEqual(fetched_x.dtype, val.dtype) if __name__ == '__main__': unittest.main()