# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function from ppdet.core.workspace import register, create from .meta_arch import BaseArch from ..post_process import JDEBBoxPostProcess __all__ = ['YOLOv3'] # YOLOv3,PP-YOLO,PP-YOLOv2,PP-YOLOE,PP-YOLOE+ use the same architecture as YOLOv3 # PP-YOLOE and PP-YOLOE+ are recommended to use PPYOLOE architecture in ppyoloe.py @register class YOLOv3(BaseArch): __category__ = 'architecture' __shared__ = ['data_format'] __inject__ = ['post_process'] def __init__(self, backbone='DarkNet', neck='YOLOv3FPN', yolo_head='YOLOv3Head', post_process='BBoxPostProcess', data_format='NCHW', for_mot=False): """ YOLOv3 network, see https://arxiv.org/abs/1804.02767 Args: backbone (nn.Layer): backbone instance neck (nn.Layer): neck instance yolo_head (nn.Layer): anchor_head instance bbox_post_process (object): `BBoxPostProcess` instance data_format (str): data format, NCHW or NHWC for_mot (bool): whether return other features for multi-object tracking models, default False in pure object detection models. """ super(YOLOv3, self).__init__(data_format=data_format) self.backbone = backbone self.neck = neck self.yolo_head = yolo_head self.post_process = post_process self.for_mot = for_mot self.return_idx = isinstance(post_process, JDEBBoxPostProcess) @classmethod def from_config(cls, cfg, *args, **kwargs): # backbone backbone = create(cfg['backbone']) # fpn kwargs = {'input_shape': backbone.out_shape} neck = create(cfg['neck'], **kwargs) # head kwargs = {'input_shape': neck.out_shape} yolo_head = create(cfg['yolo_head'], **kwargs) return { 'backbone': backbone, 'neck': neck, "yolo_head": yolo_head, } def _forward(self): body_feats = self.backbone(self.inputs) if self.for_mot: neck_feats = self.neck(body_feats, self.for_mot) else: neck_feats = self.neck(body_feats) if isinstance(neck_feats, dict): assert self.for_mot == True emb_feats = neck_feats['emb_feats'] neck_feats = neck_feats['yolo_feats'] if self.training: yolo_losses = self.yolo_head(neck_feats, self.inputs) if self.for_mot: return {'det_losses': yolo_losses, 'emb_feats': emb_feats} else: return yolo_losses else: yolo_head_outs = self.yolo_head(neck_feats) if self.for_mot: # the detection part of JDE MOT model boxes_idx, bbox, bbox_num, nms_keep_idx = self.post_process( yolo_head_outs, self.yolo_head.mask_anchors) output = { 'bbox': bbox, 'bbox_num': bbox_num, 'boxes_idx': boxes_idx, 'nms_keep_idx': nms_keep_idx, 'emb_feats': emb_feats, } else: if self.return_idx: # the detection part of JDE MOT model _, bbox, bbox_num, _ = self.post_process( yolo_head_outs, self.yolo_head.mask_anchors) elif self.post_process is not None: # anchor based YOLOs: YOLOv3,PP-YOLO,PP-YOLOv2 use mask_anchors bbox, bbox_num = self.post_process( yolo_head_outs, self.yolo_head.mask_anchors, self.inputs['im_shape'], self.inputs['scale_factor']) else: # anchor free YOLOs: PP-YOLOE, PP-YOLOE+ bbox, bbox_num = self.yolo_head.post_process( yolo_head_outs, self.inputs['scale_factor']) output = {'bbox': bbox, 'bbox_num': bbox_num} return output def get_loss(self): return self._forward() def get_pred(self): return self._forward()