#include "adadelta_optimizer.h" #include #include namespace paddle { namespace optimizer { void AdadeltaOptimizer::Update(const Tensor* gradient) { num_sample_passed_ += 1; double learning_rate = lr_policy_->LearningRate(num_sample_passed_); Tensor& param = *parameter_; const Tensor& grad = *gradient; Tensor& accum_g = *accum_gradient_; Tensor& accum_d = *accum_delta_; Tensor& update_d = *update_delta_; for (size_t i = 0; i < param.size(); ++i) { accum_g[i] = rho_ * accum_g[i] + (1.0 - rho_) * grad[i] * grad[i]; update_d[i] = std::sqrt(accum_d[i] + epsilon_) / std::sqrt(accum_g[i] + epsilon_) * grad[i]; accum_d[i] = rho_ * accum_d[i] + (1.0 - rho_) * update_d[i] * update_d[i]; param[i] -= learning_rate * update_d[i] + learning_rate * decay_ * param[i]; } } const char* AdadeltaOptimizer::SerializeState(int* state_len) { AdadeltaOptimizerState state; state.set_learning_rate(lr_policy_->LearningRate(num_sample_passed_)); state.set_num_sample_passed(num_sample_passed_); TensorToProto(*parameter_, state.mutable_parameter()); TensorToProto(*accum_gradient_, state.mutable_accum_gradient()); TensorToProto(*accum_delta_, state.mutable_accum_delta()); TensorToProto(*update_delta_, state.mutable_update_delta()); *state_len = CalStateSize(parameter_, accum_gradient_, accum_delta_, update_delta_); return state.SerializeAsString().c_str(); } void AdadeltaOptimizer::DeserializeState(const std::string& str) { AdadeltaOptimizerState state; state.ParseFromString(str); lr_policy_->set(state.learning_rate()); num_sample_passed_ = state.num_sample_passed(); ProtoToTensor(state.parameter(), parameter_); ProtoToTensor(state.accum_gradient(), accum_gradient_); ProtoToTensor(state.accum_delta(), accum_delta_); ProtoToTensor(state.update_delta(), update_delta_); } } // namespace optimizer } // namespace paddle