/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/operators/math/math_function.h" #include "paddle/fluid/platform/transform.h" namespace paddle { namespace operators { inline void ExpandAspectRatios(const std::vector& input_aspect_ratior, bool flip, std::vector& output_aspect_ratior) { constexpr float epsilon = 1e-6; output_aspect_ratior.clear(); output_aspect_ratior.push_back(1.0f); for (size_t i = 0; i < input_aspect_ratior.size(); ++i) { float ar = input_aspect_ratior[i]; bool already_exist = false; for (size_t j = 0; j < output_aspect_ratior.size(); ++j) { if (fabs(ar - output_aspect_ratior[j]) < epsilon) { already_exist = true; break; } } if (!already_exist) { output_aspect_ratior.push_back(ar); if (flip) { output_aspect_ratior.push_back(1.0f / ar); } } } } template struct ClipFunctor { HOSTDEVICE inline T operator()(T in) const { return std::min(std::max(in, 0.), 1.); } }; template class PriorBoxOpKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { auto* input = ctx.Input("Input"); auto* image = ctx.Input("Image"); auto* boxes = ctx.Output("Boxes"); auto* vars = ctx.Output("Variances"); auto min_sizes = ctx.Attr>("min_sizes"); auto max_sizes = ctx.Attr>("max_sizes"); auto input_aspect_ratio = ctx.Attr>("aspect_ratios"); auto variances = ctx.Attr>("variances"); auto flip = ctx.Attr("flip"); auto clip = ctx.Attr("clip"); std::vector aspect_ratios; ExpandAspectRatios(input_aspect_ratio, flip, aspect_ratios); T step_w = static_cast(ctx.Attr("step_w")); T step_h = static_cast(ctx.Attr("step_h")); T offset = static_cast(ctx.Attr("offset")); auto img_width = image->dims()[3]; auto img_height = image->dims()[2]; auto feature_width = input->dims()[3]; auto feature_height = input->dims()[2]; T step_width, step_height; if (step_w == 0 || step_h == 0) { step_width = static_cast(img_width) / feature_width; step_height = static_cast(img_height) / feature_height; } else { step_width = step_w; step_height = step_h; } int num_priors = aspect_ratios.size() * min_sizes.size(); if (max_sizes.size() > 0) { num_priors += max_sizes.size(); } boxes->mutable_data(ctx.GetPlace()); vars->mutable_data(ctx.GetPlace()); auto e_boxes = framework::EigenTensor::From(*boxes); for (int h = 0; h < feature_height; ++h) { for (int w = 0; w < feature_width; ++w) { T center_x = (w + offset) * step_width; T center_y = (h + offset) * step_height; T box_width, box_height; int idx = 0; for (size_t s = 0; s < min_sizes.size(); ++s) { auto min_size = min_sizes[s]; // first prior: aspect_ratio = 1, size = min_size box_width = box_height = min_size / 2.; // xmin e_boxes(h, w, idx, 0) = (center_x - box_width) / img_width; // ymin e_boxes(h, w, idx, 1) = (center_y - box_height) / img_height; // xmax e_boxes(h, w, idx, 2) = (center_x + box_width) / img_width; // ymax e_boxes(h, w, idx, 3) = (center_y + box_height) / img_height; idx++; if (max_sizes.size() > 0) { auto max_size = max_sizes[s]; // second prior: aspect_ratio = 1, // size = sqrt(min_size * max_size) box_width = box_height = sqrt(min_size * max_size) / 2.; // xmin e_boxes(h, w, idx, 0) = (center_x - box_width) / img_width; // ymin e_boxes(h, w, idx, 1) = (center_y - box_height) / img_height; // xmax e_boxes(h, w, idx, 2) = (center_x + box_width) / img_width; // ymax e_boxes(h, w, idx, 3) = (center_y + box_height) / img_height; idx++; } // rest of priors for (size_t r = 0; r < aspect_ratios.size(); ++r) { float ar = aspect_ratios[r]; if (fabs(ar - 1.) < 1e-6) { continue; } box_width = min_size * sqrt(ar) / 2.; box_height = min_size / sqrt(ar) / 2.; // xmin e_boxes(h, w, idx, 0) = (center_x - box_width) / img_width; // ymin e_boxes(h, w, idx, 1) = (center_y - box_height) / img_height; // xmax e_boxes(h, w, idx, 2) = (center_x + box_width) / img_width; // ymax e_boxes(h, w, idx, 3) = (center_y + box_height) / img_height; idx++; } } } } if (clip) { platform::Transform trans; ClipFunctor clip_func; trans(ctx.template device_context(), boxes->data(), boxes->data() + boxes->numel(), boxes->data(), clip_func); } framework::Tensor var_t; var_t.mutable_data( framework::make_ddim({1, static_cast(variances.size())}), ctx.GetPlace()); auto var_et = framework::EigenTensor::From(var_t); for (size_t i = 0; i < variances.size(); ++i) { var_et(0, i) = variances[i]; } int box_num = feature_height * feature_width * num_priors; auto var_dim = vars->dims(); vars->Resize({box_num, static_cast(variances.size())}); auto e_vars = framework::EigenMatrix::From(*vars); e_vars = var_et.broadcast(Eigen::DSizes(box_num, 1)); vars->Resize(var_dim); } }; // namespace operators } // namespace operators } // namespace paddle