/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/fluid/framework/data_layout_transform.h" #include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/memory/malloc.h" #include "paddle/fluid/platform/mkldnn_reuse.h" namespace paddle { namespace operators { using Tensor = framework::Tensor; using framework::DataLayout; template class TransposeMKLDNNOpKernel : public paddle::framework::OpKernel { public: void Compute(const paddle::framework::ExecutionContext& ctx) const override { PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()), "It must use CPUPlace."); const bool is_test = ctx.Attr("is_test"); PADDLE_ENFORCE( is_test == true, "ConvTransposeMKLDNN works only for inference!. Set is_test = True"); auto& dev_ctx = ctx.template device_context(); const auto& mkldnn_engine = dev_ctx.GetEngine(); std::vector axis = ctx.Attr>("axis"); int ndims = axis.size(); auto* input = ctx.Input("X"); auto* output = ctx.Output("Out"); const T* input_data = input->data(); if (ndims == 1) { output->ShareDataWith(*input); return; } std::vector nchw_axis(ndims, 0); for (size_t i = 0; i < nchw_axis.size(); ++i) { nchw_axis[i] = i; } std::vector nchw_tz = paddle::framework::vectorize2int(input->dims()); std::string data_format = ctx.Attr("data_format"); auto src_md = input->format() != mkldnn::memory::format::nchw ? platform::MKLDNNMemDesc(nchw_tz, platform::MKLDNNGetDataType(), input->format()) : Axis2MemoryDesc(nchw_tz, nchw_axis); this->TransposeKernel(ctx.GetPlace(), Axis2MemoryDesc(nchw_tz, axis), src_md, output, input_data, nchw_tz, mkldnn_engine); } protected: mkldnn::memory::desc Axis2MemoryDesc(std::vector& nchw_tz, std::vector& axis) const { mkldnn_memory_desc_t mem_fmt; mem_fmt.primitive_kind = mkldnn_memory; mem_fmt.ndims = axis.size(); for (unsigned int i = 0; i < nchw_tz.size(); ++i) { mem_fmt.dims[i] = nchw_tz[i]; // logical dimensions (nchw format, // regardless physical layout) } mem_fmt.data_type = mkldnn_f32; mem_fmt.format = mkldnn_blocked; unsigned int total_stride = 1; for (int i = nchw_tz.size() - 1; i >= 0; --i) { mem_fmt.layout_desc.blocking.padding_dims[i] = nchw_tz[i]; // logical dimensions (nchw format, regardless physical // layout) mem_fmt.layout_desc.blocking.block_dims[i] = 1; mem_fmt.layout_desc.blocking.offset_padding_to_data[i] = 0; // no offset mem_fmt.layout_desc.blocking.strides[0][axis[i]] = total_stride; mem_fmt.layout_desc.blocking.strides[1][axis[i]] = 1; total_stride *= nchw_tz[axis[i]]; } mem_fmt.layout_desc.blocking.offset_padding = 0; // no initial offset return mem_fmt; } void TransposeKernel(platform::Place place, mkldnn::memory::desc md_o, mkldnn::memory::desc md_i, Tensor* output, const T* data_i, std::vector& nchw_dims, const mkldnn::engine& eng) const { // Make Memory primitive descriptors auto mpd_o = mkldnn::memory::primitive_desc(md_o, eng); auto mpd_i = mkldnn::memory::primitive_desc(md_i, eng); auto data_o = output->mutable_data( place, paddle::memory::Allocator::kDefault, mpd_o.get_size()); auto src = mkldnn::memory(mpd_i, (T*)(data_i)); auto dst = mkldnn::memory(mpd_o, data_o); auto r = mkldnn::reorder(src, dst); mkldnn::stream(mkldnn::stream::kind::eager).submit({r}).wait(); } }; } // namespace operators } // namespace paddle namespace ops = paddle::operators; REGISTER_OP_KERNEL(transpose2, MKLDNN, ::paddle::platform::CPUPlace, ops::TransposeMKLDNNOpKernel); REGISTER_OP_KERNEL(transpose, MKLDNN, ::paddle::platform::CPUPlace, ops::TransposeMKLDNNOpKernel);