# Copyright (c) 2016 Baidu, Inc. All Rights Reserved # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from py_paddle import swig_paddle import numpy as np import unittest class TestMatrix(unittest.TestCase): def test_createZero_get_set(self): m = swig_paddle.Matrix.createZero(32, 24) self.assertEqual(m.getWidth(), 24) self.assertEqual(m.getHeight(), 32) for x in xrange(24): for y in xrange(32): self.assertEqual(0.0, m.get(x, y)) with self.assertRaises(swig_paddle.RangeError): m.get(51, 47) m.set(3, 3, 3.0) self.assertEqual(m.get(3, 3), 3.0) def test_sparse(self): m = swig_paddle.Matrix.createSparse(3, 3, 6, True, False, False) self.assertIsNotNone(m) self.assertTrue(m.isSparse()) self.assertEqual(m.getSparseValueType(), swig_paddle.SPARSE_NON_VALUE) self.assertEqual(m.getSparseFormat(), swig_paddle.SPARSE_CSR) m.sparseCopyFrom([0, 2, 3, 3], [0, 1, 2], []) self.assertEqual(m.getSparseRowCols(0), [0, 1]) self.assertEqual(m.getSparseRowCols(1), [2]) self.assertEqual(m.getSparseRowCols(2), []) def test_sparse_value(self): m = swig_paddle.Matrix.createSparse(3, 3, 6, False, False, False) self.assertIsNotNone(m) m.sparseCopyFrom([0, 2, 3, 3], [0, 1, 2], [7.3, 4.2, 3.2]) def assertKVArraySame(actual, expect): self.assertEqual(len(actual), len(expect)) for i in xrange(len(actual)): a = actual[i] e = expect[i] self.assertIsInstance(a, tuple) self.assertIsInstance(e, tuple) self.assertEqual(len(a), 2) self.assertEqual(len(e), 2) self.assertEqual(a[0], e[0]) self.assertTrue(abs(a[1] - e[1]) < 1e-5) first_row = m.getSparseRowColsVal(0) assertKVArraySame(first_row, [(0, 7.3), (1, 4.2)]) def test_createDenseMat(self): m = swig_paddle.Matrix.createDense([0.1, 0.2, 0.3, 0.4, 0.5, 0.6], 2, 3) self.assertIsNotNone(m) self.assertTrue(abs(m.get(1, 1) - 0.5) < 1e-5) def test_numpyCpu(self): numpy_mat = np.matrix([[1, 2], [3, 4], [5, 6]], dtype="float32") m = swig_paddle.Matrix.createCpuDenseFromNumpy(numpy_mat) self.assertEqual( (int(m.getHeight()), int(m.getWidth())), numpy_mat.shape) # the numpy matrix and paddle matrix shared the same memory. numpy_mat[0, 1] = 342.23 for h in xrange(m.getHeight()): for w in xrange(m.getWidth()): self.assertEqual(m.get(h, w), numpy_mat[h, w]) mat2 = m.toNumpyMatInplace() mat2[1, 1] = 32.2 self.assertTrue(np.array_equal(mat2, numpy_mat)) def test_numpyGpu(self): if swig_paddle.isGpuVersion(): numpy_mat = np.matrix([[1, 2], [3, 4], [5, 6]], dtype='float32') gpu_m = swig_paddle.Matrix.createGpuDenseFromNumpy(numpy_mat) assert isinstance(gpu_m, swig_paddle.Matrix) self.assertEqual((int(gpu_m.getHeight()), int(gpu_m.getWidth())), numpy_mat.shape) self.assertTrue(gpu_m.isGpu()) numpy_mat = gpu_m.copyToNumpyMat() numpy_mat[0, 1] = 3.23 for a, e in zip(gpu_m.getData(), [1.0, 2.0, 3.0, 4.0, 5.0, 6.0]): self.assertAlmostEqual(a, e) gpu_m.copyFromNumpyMat(numpy_mat) for a, e in zip(gpu_m.getData(), [1.0, 3.23, 3.0, 4.0, 5.0, 6.0]): self.assertAlmostEqual(a, e) def test_numpy(self): numpy_mat = np.matrix([[1, 2], [3, 4], [5, 6]], dtype="float32") m = swig_paddle.Matrix.createDenseFromNumpy(numpy_mat) self.assertEqual((int(m.getHeight()), int(m.getWidth())), numpy_mat.shape) self.assertEqual(m.isGpu(), swig_paddle.isUsingGpu()) for a, e in zip(m.getData(), [1.0, 2.0, 3.0, 4.0, 5.0, 6.0]): self.assertAlmostEqual(a, e) if __name__ == "__main__": swig_paddle.initPaddle("--use_gpu=0") suite = unittest.TestLoader().loadTestsFromTestCase(TestMatrix) unittest.TextTestRunner().run(suite) if swig_paddle.isGpuVersion(): swig_paddle.setUseGpu(True) unittest.main()