// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include #include #include #include #include #include "paddle/include/paddle_inference_api.h" namespace paddle { namespace demo { struct Record { std::vector data; std::vector shape; }; static void split(const std::string& str, char sep, std::vector* pieces) { pieces->clear(); if (str.empty()) { return; } size_t pos = 0; size_t next = str.find(sep, pos); while (next != std::string::npos) { pieces->push_back(str.substr(pos, next - pos)); pos = next + 1; next = str.find(sep, pos); } if (!str.substr(pos).empty()) { pieces->push_back(str.substr(pos)); } } Record ProcessALine(const std::string& line) { VLOG(3) << "process a line"; std::vector columns; split(line, '\t', &columns); CHECK_EQ(columns.size(), 2UL) << "data format error, should be \t"; Record record; std::vector data_strs; split(columns[0], ' ', &data_strs); for (auto& d : data_strs) { record.data.push_back(std::stof(d)); } std::vector shape_strs; split(columns[1], ' ', &shape_strs); for (auto& s : shape_strs) { record.shape.push_back(std::stoi(s)); } VLOG(3) << "data size " << record.data.size(); VLOG(3) << "data shape size " << record.shape.size(); return record; } void CheckOutput(const std::string& referfile, const PaddleTensor& output) { std::string line; std::ifstream file(referfile); std::getline(file, line); auto refer = ProcessALine(line); file.close(); size_t numel = output.data.length() / PaddleDtypeSize(output.dtype); VLOG(3) << "predictor output numel " << numel; VLOG(3) << "reference output numel " << refer.data.size(); CHECK_EQ(numel, refer.data.size()); switch (output.dtype) { case PaddleDType::INT64: { for (size_t i = 0; i < numel; ++i) { CHECK_EQ(static_cast(output.data.data())[i], refer.data[i]); } break; } case PaddleDType::FLOAT32: for (size_t i = 0; i < numel; ++i) { CHECK_LT( fabs(static_cast(output.data.data())[i] - refer.data[i]), 1e-5); } break; } } /* * Get a summary of a PaddleTensor content. */ static std::string SummaryTensor(const PaddleTensor& tensor) { std::stringstream ss; int num_elems = tensor.data.length() / PaddleDtypeSize(tensor.dtype); ss << "data[:10]\t"; switch (tensor.dtype) { case PaddleDType::INT64: { for (int i = 0; i < std::min(num_elems, 10); i++) { ss << static_cast(tensor.data.data())[i] << " "; } break; } case PaddleDType::FLOAT32: for (int i = 0; i < std::min(num_elems, 10); i++) { ss << static_cast(tensor.data.data())[i] << " "; } break; } return ss.str(); } } // namespace demo } // namespace paddle