# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import numpy as np import paddle.fluid.core as core from op_test import OpTest from scipy.special import expit from test_activation_op import TestRelu, TestTanh, TestSqrt, TestAbs class TestMKLDNNReluDim2(TestRelu): def setUp(self): super(TestMKLDNNReluDim2, self).setUp() self.attrs = {"use_mkldnn": True} class TestMKLDNNTanhDim2(TestTanh): def setUp(self): super(TestMKLDNNTanhDim2, self).setUp() self.attrs = {"use_mkldnn": True} class TestMKLDNNSqrtDim2(TestSqrt): def setUp(self): super(TestMKLDNNSqrtDim2, self).setUp() self.attrs = {"use_mkldnn": True} class TestMKLDNNAbsDim2(TestAbs): def setUp(self): super(TestMKLDNNAbsDim2, self).setUp() self.attrs = {"use_mkldnn": True} class TestMKLDNNReluDim4(TestRelu): def setUp(self): super(TestMKLDNNReluDim4, self).setUp() x = np.random.uniform(-1, 1, [2, 4, 3, 5]).astype("float32") # The same reason with TestAbs x[np.abs(x) < 0.005] = 0.02 out = np.maximum(x, 0) self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)} self.outputs = {'Out': out} self.attrs = {"use_mkldnn": True} class TestMKLDNNTanhDim4(TestTanh): def setUp(self): super(TestMKLDNNTanhDim4, self).setUp() self.inputs = { 'X': np.random.uniform(0.1, 1, [2, 4, 3, 5]).astype("float32") } self.outputs = {'Out': np.tanh(self.inputs['X'])} self.attrs = {"use_mkldnn": True} class TestMKLDNNSqrtDim4(TestSqrt): def setUp(self): super(TestMKLDNNSqrtDim4, self).setUp() self.inputs = { 'X': np.random.uniform(0.1, 1, [2, 4, 3, 5]).astype("float32") } self.outputs = {'Out': np.sqrt(self.inputs['X'])} self.attrs = {"use_mkldnn": True} class TestMKLDNNAbsDim4(TestAbs): def setUp(self): super(TestMKLDNNAbsDim4, self).setUp() x = np.random.uniform(-1, 1, [2, 4, 3, 5]).astype("float32") # The same reason with TestAbs x[np.abs(x) < 0.005] = 0.02 self.inputs = {'X': x} self.outputs = {'Out': np.abs(self.inputs['X'])} self.attrs = {"use_mkldnn": True} if __name__ == '__main__': unittest.main()