# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import paddle.v2 as paddle import paddle.v2.fluid as fluid import numpy as np prog = fluid.framework.Program() block = prog.current_block() random_reader = block.create_var( type=fluid.core.VarDesc.VarType.READER, name="RandomReader") random_reader.desc.set_lod_levels([0, 0]) create_random_reader_op = block.append_op( type="create_random_reader", outputs={"Out": random_reader}, attrs={ "shape_concat": [1, 2, 1, 1], "ranks": [2, 2], "min": 0.0, "max": 1.0 }) out1 = block.create_var( type=fluid.core.VarDesc.VarType.LOD_TENSOR, name="Out1", shape=[10, 2], dtype="float32", lod_level=1) out2 = block.create_var( type=fluid.core.VarDesc.VarType.LOD_TENSOR, name="Out2", shape=[10, 1], dtype="float32", lod_level=1) read_op = block.append_op( type="read", inputs={"Reader": random_reader}, outputs={"Out": [out1, out2]}) place = fluid.CPUPlace() exe = fluid.Executor(place) [res1, res2] = exe.run(prog, fetch_list=[out1, out2]) if len(res1) == 0 or len(res2) == 0: exit(1) exit(0)