# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import paddle import paddle.nn as nn import paddle.nn.functional as F from paddle import ParamAttr from paddle.nn.initializer import Constant, Uniform, Normal from paddle import ParamAttr from ppdet.core.workspace import register, serializable from paddle.regularizer import L2Decay from ppdet.modeling.layers import DeformableConvV2 import math from ppdet.modeling.ops import batch_norm from ..shape_spec import ShapeSpec __all__ = ['TTFFPN'] class Upsample(nn.Layer): def __init__(self, ch_in, ch_out, name=None): super(Upsample, self).__init__() fan_in = ch_in * 3 * 3 stdv = 1. / math.sqrt(fan_in) self.dcn = DeformableConvV2( ch_in, ch_out, kernel_size=3, weight_attr=ParamAttr(initializer=Uniform(-stdv, stdv)), bias_attr=ParamAttr( initializer=Constant(0), regularizer=L2Decay(0.), learning_rate=2.), lr_scale=2., regularizer=L2Decay(0.)) self.bn = batch_norm( ch_out, norm_type='bn', initializer=Constant(1.), name=name) def forward(self, feat): dcn = self.dcn(feat) bn = self.bn(dcn) relu = F.relu(bn) out = F.interpolate(relu, scale_factor=2., mode='bilinear') return out class ShortCut(nn.Layer): def __init__(self, layer_num, ch_out, name=None): super(ShortCut, self).__init__() shortcut_conv = nn.Sequential() ch_in = ch_out * 2 for i in range(layer_num): fan_out = 3 * 3 * ch_out std = math.sqrt(2. / fan_out) in_channels = ch_in if i == 0 else ch_out shortcut_name = name + '.conv.{}'.format(i) shortcut_conv.add_sublayer( shortcut_name, nn.Conv2D( in_channels=in_channels, out_channels=ch_out, kernel_size=3, padding=1, weight_attr=ParamAttr(initializer=Normal(0, std)), bias_attr=ParamAttr( learning_rate=2., regularizer=L2Decay(0.)))) if i < layer_num - 1: shortcut_conv.add_sublayer(shortcut_name + '.act', nn.ReLU()) self.shortcut = self.add_sublayer('short', shortcut_conv) def forward(self, feat): out = self.shortcut(feat) return out @register @serializable class TTFFPN(nn.Layer): """ Args: in_channels (list): number of input feature channels from backbone. [128,256,512,1024] by default, means the channels of DarkNet53 backbone return_idx [1,2,3,4]. shortcut_num (list): the number of convolution layers in each shortcut. [3,2,1] by default, means DarkNet53 backbone return_idx_1 has 3 convs in its shortcut, return_idx_2 has 2 convs and return_idx_3 has 1 conv. """ def __init__(self, in_channels=[128, 256, 512, 1024], shortcut_num=[3, 2, 1]): super(TTFFPN, self).__init__() self.planes = [c // 2 for c in in_channels[:-1]][::-1] self.shortcut_num = shortcut_num[::-1] self.shortcut_len = len(shortcut_num) self.ch_in = in_channels[::-1] self.upsample_list = [] self.shortcut_list = [] for i, out_c in enumerate(self.planes): in_c = self.ch_in[i] if i == 0 else self.ch_in[i] // 2 upsample = self.add_sublayer( 'upsample.' + str(i), Upsample( in_c, out_c, name='upsample.' + str(i))) self.upsample_list.append(upsample) if i < self.shortcut_len: shortcut = self.add_sublayer( 'shortcut.' + str(i), ShortCut( self.shortcut_num[i], out_c, name='shortcut.' + str(i))) self.shortcut_list.append(shortcut) def forward(self, inputs): feat = inputs[-1] for i, out_c in enumerate(self.planes): feat = self.upsample_list[i](feat) if i < self.shortcut_len: shortcut = self.shortcut_list[i](inputs[-i - 2]) feat = feat + shortcut return feat @classmethod def from_config(cls, cfg, input_shape): return {'in_channels': [i.channels for i in input_shape], } @property def out_shape(self): return [ShapeSpec(channels=self.planes[-1], )]