# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import yaml import glob import cv2 import numpy as np import math import paddle import sys from collections import Sequence # add deploy path of PadleDetection to sys.path parent_path = os.path.abspath(os.path.join(__file__, *(['..'] * 3))) sys.path.insert(0, parent_path) from paddle.inference import Config, create_predictor from python.utils import argsparser, Timer, get_current_memory_mb from python.benchmark_utils import PaddleInferBenchmark from python.infer import Detector, print_arguments from pipeline.pphuman.attr_infer import AttrDetector class VehicleAttr(AttrDetector): """ Args: model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU run_mode (str): mode of running(paddle/trt_fp32/trt_fp16) batch_size (int): size of pre batch in inference trt_min_shape (int): min shape for dynamic shape in trt trt_max_shape (int): max shape for dynamic shape in trt trt_opt_shape (int): opt shape for dynamic shape in trt trt_calib_mode (bool): If the model is produced by TRT offline quantitative calibration, trt_calib_mode need to set True cpu_threads (int): cpu threads enable_mkldnn (bool): whether to open MKLDNN type_threshold (float): The threshold of score for vehicle type recognition. color_threshold (float): The threshold of score for vehicle color recognition. """ def __init__(self, model_dir, device='CPU', run_mode='paddle', batch_size=1, trt_min_shape=1, trt_max_shape=1280, trt_opt_shape=640, trt_calib_mode=False, cpu_threads=1, enable_mkldnn=False, output_dir='output', color_threshold=0.5, type_threshold=0.5): super(VehicleAttr, self).__init__( model_dir=model_dir, device=device, run_mode=run_mode, batch_size=batch_size, trt_min_shape=trt_min_shape, trt_max_shape=trt_max_shape, trt_opt_shape=trt_opt_shape, trt_calib_mode=trt_calib_mode, cpu_threads=cpu_threads, enable_mkldnn=enable_mkldnn, output_dir=output_dir) self.color_threshold = color_threshold self.type_threshold = type_threshold self.result_history = {} self.color_list = [ "yellow", "orange", "green", "gray", "red", "blue", "white", "golden", "brown", "black" ] self.type_list = [ "sedan", "suv", "van", "hatchback", "mpv", "pickup", "bus", "truck", "estate" ] def postprocess(self, inputs, result): # postprocess output of predictor im_results = result['output'] batch_res = [] for res in im_results: res = res.tolist() attr_res = [] color_res_str = "Color: " type_res_str = "Type: " color_idx = np.argmax(res[:10]) type_idx = np.argmax(res[10:]) if res[color_idx] >= self.color_threshold: color_res_str += self.color_list[color_idx] else: color_res_str += "Unknown" attr_res.append(color_res_str) if res[type_idx + 10] >= self.type_threshold: type_res_str += self.type_list[type_idx] else: type_res_str += "Unknown" attr_res.append(type_res_str) batch_res.append(attr_res) result = {'output': batch_res} return result if __name__ == '__main__': paddle.enable_static() parser = argsparser() FLAGS = parser.parse_args() print_arguments(FLAGS) FLAGS.device = FLAGS.device.upper() assert FLAGS.device in ['CPU', 'GPU', 'XPU' ], "device should be CPU, GPU or XPU" assert not FLAGS.use_gpu, "use_gpu has been deprecated, please use --device" main()