[English](attribute_en.md) | 简体中文 # PP-Human属性识别模块 行人属性识别在智慧社区,工业巡检,交通监控等方向都具有广泛应用,PP-Human中集成了属性识别模块,属性包含性别、年龄、帽子、眼镜、上衣下衣款式等。我们提供了预训练模型,用户可以直接下载使用。 | 任务 | 算法 | 精度 | 预测速度(ms) |下载链接 | |:---------------------|:---------:|:------:|:------:| :---------------------------------------------------------------------------------: | | 行人属性高精度模型 | PP-HGNet_small | mA: 95.4 | 单人 1.54ms | [下载链接](https://bj.bcebos.com/v1/paddledet/models/pipeline/PPLCNet_x1_0_person_attribute_945_infer.tar) | | 行人属性快速版模型 | PP-LCNet_x1_0 | mA: 94.5 | 单人 0.54ms | [下载链接](https://bj.bcebos.com/v1/paddledet/models/pipeline/PPLCNet_x1_0_person_attribute_945_infer.tar) | | 行人属性平衡模型 | PP-HGNet_tiny | mA: 95.2 | 单人 1.14ms | [下载链接](https://bj.bcebos.com/v1/paddledet/models/pipeline/PPHGNet_tiny_person_attribute_952_infer.tar) | 1. 行人属性分析精度为[PA100k](https://github.com/xh-liu/HydraPlus-Net#pa-100k-dataset),[RAPv2](http://www.rapdataset.com/rapv2.html),[PETA](http://mmlab.ie.cuhk.edu.hk/projects/PETA.html)和部分业务数据融合训练测试得到 2. 预测速度为V100 机器上使用TensorRT FP16时的速度, 速度包含数据预处理、模型预测、后处理全流程 ## 使用方法 1. 从上表链接中下载模型并解压到```./output_inference```路径下,并且设置infer_cfg_pphuman.yml中`ATTR`的enable: True 2. 图片输入时,启动命令如下 ```python python deploy/pipeline/pipeline.py --config deploy/pipeline/config/infer_cfg_pphuman.yml \ --image_file=test_image.jpg \ --device=gpu \ ``` 3. 视频输入时,启动命令如下 ```python python deploy/pipeline/pipeline.py --config deploy/pipeline/config/infer_cfg_pphuman.yml \ --video_file=test_video.mp4 \ --device=gpu \ ``` 4. 若修改模型路径,有以下两种方式: - ```./deploy/pipeline/config/infer_cfg_pphuman.yml```下可以配置不同模型路径,属性识别模型修改ATTR字段下配置 - **(推荐)**命令行中增加`--model_dir`修改模型路径: ```python python deploy/pipeline/pipeline.py --config deploy/pipeline/config/infer_cfg_pphuman.yml \ --video_file=test_video.mp4 \ --device=gpu \ --model_dir det=ppyoloe/ ``` 测试效果如下: