# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import os, sys # add python path of PadleDetection to sys.path parent_path = os.path.abspath(os.path.join(__file__, *(['..'] * 3))) if parent_path not in sys.path: sys.path.append(parent_path) import paddle from paddle import fluid from ppdet.core.workspace import load_config, merge_config, create from ppdet.utils.cli import ArgsParser import ppdet.utils.checkpoint as checkpoint from ppdet.utils.export_utils import save_infer_model, dump_infer_config from ppdet.utils.check import check_config, check_version, enable_static_mode from paddleslim.prune import Pruner from paddleslim.analysis import flops import logging FORMAT = '%(asctime)s-%(levelname)s: %(message)s' logging.basicConfig(level=logging.INFO, format=FORMAT) logger = logging.getLogger(__name__) def main(): cfg = load_config(FLAGS.config) merge_config(FLAGS.opt) check_config(cfg) check_version() main_arch = cfg.architecture # Use CPU for exporting inference model instead of GPU place = fluid.CPUPlace() exe = fluid.Executor(place) model = create(main_arch) startup_prog = fluid.Program() infer_prog = fluid.Program() with fluid.program_guard(infer_prog, startup_prog): with fluid.unique_name.guard(): inputs_def = cfg['TestReader']['inputs_def'] inputs_def['use_dataloader'] = False feed_vars, _ = model.build_inputs(**inputs_def) test_fetches = model.test(feed_vars) infer_prog = infer_prog.clone(True) exe.run(startup_prog) checkpoint.load_checkpoint(exe, infer_prog, cfg.weights) pruned_params = FLAGS.pruned_params assert ( FLAGS.pruned_params is not None ), "FLAGS.pruned_params is empty!!! Please set it by '--pruned_params' option." pruned_params = FLAGS.pruned_params.strip().split(",") logger.info("pruned params: {}".format(pruned_params)) pruned_ratios = [float(n) for n in FLAGS.pruned_ratios.strip().split(",")] logger.info("pruned ratios: {}".format(pruned_ratios)) assert (len(pruned_params) == len(pruned_ratios) ), "The length of pruned params and pruned ratios should be equal." assert (pruned_ratios > [0] * len(pruned_ratios) and pruned_ratios < [1] * len(pruned_ratios) ), "The elements of pruned ratios should be in range (0, 1)." base_flops = flops(infer_prog) pruner = Pruner() infer_prog, _, _ = pruner.prune( infer_prog, fluid.global_scope(), params=pruned_params, ratios=pruned_ratios, place=place, only_graph=True) pruned_flops = flops(infer_prog) logger.info("pruned FLOPS: {}".format( float(base_flops - pruned_flops) / base_flops)) dump_infer_config(FLAGS, cfg) save_infer_model(FLAGS, exe, feed_vars, test_fetches, infer_prog) if __name__ == '__main__': enable_static_mode() parser = ArgsParser() parser.add_argument( "--output_dir", type=str, default="output", help="Directory for storing the output model files.") parser.add_argument( "-p", "--pruned_params", default=None, type=str, help="The parameters to be pruned when calculating sensitivities.") parser.add_argument( "--pruned_ratios", default=None, type=str, help="The ratios pruned iteratively for each parameter when calculating sensitivities." ) FLAGS = parser.parse_args() main()