// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include "include/preprocess_op.h" namespace PaddleDetection { void InitInfo::Run(cv::Mat* im, ImageBlob* data) { data->ori_im_size_ = { static_cast(im->rows), static_cast(im->cols) }; data->ori_im_size_f_ = { static_cast(im->rows), static_cast(im->cols), 1.0 }; data->eval_im_size_f_ = { static_cast(im->rows), static_cast(im->cols), 1.0 }; data->scale_factor_f_ = {1., 1., 1., 1.}; } void Normalize::Run(cv::Mat* im, ImageBlob* data) { double e = 1.0; if (is_scale_) { e /= 255.0; } (*im).convertTo(*im, CV_32FC3, e); for (int h = 0; h < im->rows; h++) { for (int w = 0; w < im->cols; w++) { im->at(h, w)[0] = (im->at(h, w)[0] - mean_[0] ) / scale_[0]; im->at(h, w)[1] = (im->at(h, w)[1] - mean_[1] ) / scale_[1]; im->at(h, w)[2] = (im->at(h, w)[2] - mean_[2] ) / scale_[2]; } } } void Permute::Run(cv::Mat* im, ImageBlob* data) { int rh = im->rows; int rw = im->cols; int rc = im->channels(); (data->im_data_).resize(rc * rh * rw); float* base = (data->im_data_).data(); for (int i = 0; i < rc; ++i) { int cur_c = to_bgr_ ? rc - i - 1 : i; cv::extractChannel(*im, cv::Mat(rh, rw, CV_32FC1, base + cur_c * rh * rw), i); } } void Resize::Run(cv::Mat* im, ImageBlob* data) { auto resize_scale = GenerateScale(*im); cv::resize( *im, *im, cv::Size(), resize_scale.first, resize_scale.second, interp_); if (max_size_ != 0 && !image_shape_.empty()) { // Padding the image with 0 border cv::copyMakeBorder( *im, *im, 0, max_size_ - im->rows, 0, max_size_ - im->cols, cv::BORDER_CONSTANT, cv::Scalar(0)); } data->eval_im_size_f_ = { static_cast(im->rows), static_cast(im->cols), resize_scale.first }; data->scale_factor_f_ = { resize_scale.first, resize_scale.second, resize_scale.first, resize_scale.second }; } std::pair Resize::GenerateScale(const cv::Mat& im) { std::pair resize_scale; int origin_w = im.cols; int origin_h = im.rows; if (max_size_ != 0 && (arch_ == "RCNN" || arch_ == "RetinaNet")) { int im_size_max = std::max(origin_w, origin_h); int im_size_min = std::min(origin_w, origin_h); float scale_ratio = static_cast(target_size_) / static_cast(im_size_min); if (max_size_ > 0) { if (round(scale_ratio * im_size_max) > max_size_) { scale_ratio = static_cast(max_size_) / static_cast(im_size_max); } } resize_scale = {scale_ratio, scale_ratio}; } else { resize_scale.first = static_cast(target_size_) / static_cast(origin_w); resize_scale.second = static_cast(target_size_) / static_cast(origin_h); } return resize_scale; } void PadStride::Run(cv::Mat* im, ImageBlob* data) { if (stride_ <= 0) { return; } int rc = im->channels(); int rh = im->rows; int rw = im->cols; int nh = (rh / stride_) * stride_ + (rh % stride_ != 0) * stride_; int nw = (rw / stride_) * stride_ + (rw % stride_ != 0) * stride_; cv::copyMakeBorder( *im, *im, 0, nh - rh, 0, nw - rw, cv::BORDER_CONSTANT, cv::Scalar(0)); (data->eval_im_size_f_)[0] = static_cast(im->rows); (data->eval_im_size_f_)[1] = static_cast(im->cols); } // Preprocessor op running order const std::vector Preprocessor::RUN_ORDER = { "InitInfo", "Resize", "Normalize", "PadStride", "Permute" }; void Preprocessor::Run(cv::Mat* im, ImageBlob* data) { for (const auto& name : RUN_ORDER) { if (ops_.find(name) != ops_.end()) { ops_[name]->Run(im, data); } } } } // namespace PaddleDetection