# SOLOv2 for instance segmentation
## Introduction
SOLOv2 (Segmenting Objects by Locations) is a fast instance segmentation framework with strong performance. We reproduced the model of the paper, and improved and optimized the accuracy and speed of the SOLOv2.
**Highlights:**
- Performance: `Light-R50-VD-DCN-FPN` model reached 38.6 FPS on single Tesla V100, and mask ap on the COCO-val dataset reached 38.8, which increased inference speed by 24%, mAP increased by 2.4 percentage points.
- Training Time: The training time of the model of `solov2_r50_fpn_1x` on Tesla v100 with 8 GPU is only 10 hours.
## Model Zoo
| Detector | Backbone | Multi-scale training | Lr schd | Mask APval | V100 FP32(FPS) | GPU | Download | Configs |
| :-------: | :---------------------: | :-------------------: | :-----: | :--------------------: | :-------------: | :-----: | :---------: | :------------------------: |
| YOLACT++ | R50-FPN | False | 80w iter | 34.1 (test-dev) | 33.5 | Xp | - | - |
| CenterMask | R50-FPN | True | 2x | 36.4 | 13.9 | Xp | - | - |
| CenterMask | V2-99-FPN | True | 3x | 40.2 | 8.9 | Xp | - | - |
| PolarMask | R50-FPN | True | 2x | 30.5 | 9.4 | V100 | - | - |
| BlendMask | R50-FPN | True | 3x | 37.8 | 13.5 | V100 | - | - |
| SOLOv2 (Paper) | R50-FPN | False | 1x | 34.8 | 18.5 | V100 | - | - |
| SOLOv2 (Paper) | X101-DCN-FPN | True | 3x | 42.4 | 5.9 | V100 | - | - |
| SOLOv2 | Mobilenetv3-FPN | True | 3x | 30.0 | 50 | V100 | [model](https://paddlemodels.bj.bcebos.com/object_detection/solov2_mobilenetv3_fpn_448_3x.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/solov2/solov2_mobilenetv3_fpn_448_3x.yml) |
| SOLOv2 | R50-FPN | False | 1x | 35.6 | 21.9 | V100 | [model](https://paddlemodels.bj.bcebos.com/object_detection/solov2_r50_fpn_1x.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/solov2/solov2_r50_fpn_1x.yml) |
| SOLOv2 | R50-FPN | True | 3x | 37.9 | 21.9 | V100 | [model](https://paddlemodels.bj.bcebos.com/object_detection/solov2_r50_fpn_3x.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/solov2/solov2_r50_fpn_3x.yml) |
| SOLOv2 | R101-VD-FPN | True | 3x | 42.6 | 12.1 | V100 | [model](https://paddlemodels.bj.bcebos.com/object_detection/solov2_r101_vd_fpn_3x.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/solov2/solov2_r101_vd_fpn_3x.yml) |
## Enhanced model
| Backbone | Input size | Lr schd | V100 FP32(FPS) | Mask APval | Download | Configs |
| :---------------------: | :-------------------: | :-----: | :------------: | :-----: | :---------: | :------------------------: |
| Light-R50-VD-DCN-FPN | 512 | 3x | 38.6 | 38.8 | [model](https://paddlemodels.bj.bcebos.com/object_detection/solov2_light_r50_vd_fpn_dcn_512_3x.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/solov2/solov2_light_r50_vd_fpn_dcn_512_3x.yml) |
**Notes:**
- SOLOv2 is trained on COCO train2017 dataset and evaluated on val2017 results of `mAP(IoU=0.5:0.95)`.
## Citations
```
@article{wang2020solov2,
title={SOLOv2: Dynamic, Faster and Stronger},
author={Wang, Xinlong and Zhang, Rufeng and Kong, Tao and Li, Lei and Shen, Chunhua},
journal={arXiv preprint arXiv:2003.10152},
year={2020}
}
```