architecture: FasterRCNN use_gpu: false use_xpu: true max_iters: 2000 log_iter: 1 save_dir: output snapshot_iter: 500 metric: VOC pretrain_weights: https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r50_vd_fpn_2x.tar weights: output/faster_rcnn_r50_vd_fpn_roadsign_kunlun/model_final num_classes: 5 finetune_exclude_pretrained_params: ['cls_score, bbox_pred'] FasterRCNN: backbone: ResNet fpn: FPN rpn_head: FPNRPNHead roi_extractor: FPNRoIAlign bbox_head: BBoxHead bbox_assigner: BBoxAssigner ResNet: norm_type: affine_channel depth: 50 feature_maps: [2, 3, 4, 5] freeze_at: 2 variant: d ResNetC5: depth: 50 norm_type: affine_channel variant: d FPN: max_level: 6 min_level: 2 num_chan: 256 spatial_scale: [0.03125, 0.0625, 0.125, 0.25] FPNRPNHead: anchor_generator: anchor_sizes: [32, 64, 128, 256, 512] aspect_ratios: [0.5, 1.0, 2.0] stride: [16.0, 16.0] variance: [1.0, 1.0, 1.0, 1.0] anchor_start_size: 32 min_level: 2 max_level: 6 num_chan: 256 rpn_target_assign: rpn_batch_size_per_im: 256 rpn_fg_fraction: 0.5 rpn_negative_overlap: 0.3 rpn_positive_overlap: 0.7 rpn_straddle_thresh: 0.0 use_random: true train_proposal: min_size: 0.0 nms_thresh: 0.7 pre_nms_top_n: 2000 post_nms_top_n: 2000 test_proposal: min_size: 0.0 nms_thresh: 0.7 pre_nms_top_n: 1000 post_nms_top_n: 1000 FPNRoIAlign: canconical_level: 4 canonical_size: 224 max_level: 5 min_level: 2 sampling_ratio: 2 box_resolution: 7 mask_resolution: 14 BBoxAssigner: batch_size_per_im: 512 bbox_reg_weights: [0.1, 0.1, 0.2, 0.2] bg_thresh_hi: 0.5 bg_thresh_lo: 0.0 fg_fraction: 0.25 fg_thresh: 0.5 BBoxHead: head: TwoFCHead nms: keep_top_k: 100 nms_threshold: 0.5 score_threshold: 0.05 TwoFCHead: mlp_dim: 1024 LearningRate: base_lr: 0.0001 schedulers: - !PiecewiseDecay gamma: 0.1 milestones: - 1300 - 1800 - !LinearWarmup start_factor: 0.3333333333333333 steps: 100 OptimizerBuilder: optimizer: momentum: 0.9 type: Momentum regularizer: factor: 0.0001 type: L2 TrainReader: inputs_def: fields: ['image', 'im_info', 'im_id', 'gt_bbox', 'gt_class', 'is_crowd'] dataset: !VOCDataSet dataset_dir: dataset/roadsign_voc anno_path: train.txt with_background: true batch_size: 1 bufsize: 2 shuffle: true drop_empty: true drop_last: true mixup_epoch: -1 use_process: false worker_num: 2 sample_transforms: - !DecodeImage to_rgb: true - !RandomFlipImage is_normalized: true prob: 0.5 - !NormalizeImage mean: [0.485, 0.456, 0.406] std: [0.229, 0.224, 0.225] is_scale: true is_channel_first: false - !ResizeImage target_size: 800 max_size: 1333 interp: 1 use_cv2: true - !Permute channel_first: true to_bgr: false batch_transforms: - !PadBatch pad_to_stride: 32 use_padded_im_info: false EvalReader: batch_size: 1 bufsize: 1 shuffle: false drop_empty: false drop_last: false use_process: false worker_num: 1 inputs_def: fields: ['image', 'im_info', 'im_id', 'im_shape', 'gt_bbox', 'gt_class', 'is_difficult'] dataset: !VOCDataSet dataset_dir: dataset/roadsign_voc anno_path: valid.txt with_background: true sample_transforms: - !DecodeImage to_rgb: true - !NormalizeImage mean: [0.485, 0.456, 0.406] std: [0.229, 0.224, 0.225] is_scale: true is_channel_first: false - !ResizeImage target_size: 800 max_size: 1333 interp: 1 use_cv2: true - !Permute to_bgr: false channel_first: true batch_transforms: - !PadBatch pad_to_stride: 32 use_padded_im_info: true TestReader: batch_size: 1 drop_empty: false drop_last: false inputs_def: fields: ['image', 'im_info', 'im_id', 'im_shape'] dataset: !ImageFolder anno_path: dataset/roadsign_voc/label_list.txt with_background: true sample_transforms: - !DecodeImage to_rgb: true with_mixup: false - !NormalizeImage mean: [0.485, 0.456, 0.406] std: [0.229, 0.224, 0.225] is_scale: true is_channel_first: false - !ResizeImage target_size: 800 max_size: 1333 interp: 1 use_cv2: true - !Permute to_bgr: false channel_first: true batch_transforms: - !PadBatch pad_to_stride: 32 use_padded_im_info: true