# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import paddle from paddle.fluid.framework import Variable, in_dygraph_mode from paddle.fluid import core from paddle.fluid.layer_helper import LayerHelper from paddle.fluid.dygraph import layers from paddle.fluid.data_feeder import check_variable_and_dtype, check_type, check_dtype, convert_dtype import math import six import numpy as np from functools import reduce __all__ = [ 'roi_pool', 'roi_align', #'prior_box', #'anchor_generator', #'generate_proposals', #'iou_similarity', #'box_coder', #'yolo_box', #'multiclass_nms', 'distribute_fpn_proposals', 'collect_fpn_proposals', #'matrix_nms', ] def roi_pool(input, rois, output_size, spatial_scale=1.0, rois_num=None, name=None): """ This operator implements the roi_pooling layer. Region of interest pooling (also known as RoI pooling) is to perform max pooling on inputs of nonuniform sizes to obtain fixed-size feature maps (e.g. 7*7). The operator has three steps: 1. Dividing each region proposal into equal-sized sections with output_size(h, w); 2. Finding the largest value in each section; 3. Copying these max values to the output buffer. For more information, please refer to https://stackoverflow.com/questions/43430056/what-is-roi-layer-in-fast-rcnn Args: input (Tensor): Input feature, 4D-Tensor with the shape of [N,C,H,W], where N is the batch size, C is the input channel, H is Height, W is weight. The data type is float32 or float64. rois (Tensor): ROIs (Regions of Interest) to pool over. 2D-Tensor or 2D-LoDTensor with the shape of [num_rois,4], the lod level is 1. Given as [[x1, y1, x2, y2], ...], (x1, y1) is the top left coordinates, and (x2, y2) is the bottom right coordinates. output_size (int or tuple[int, int]): The pooled output size(h, w), data type is int32. If int, h and w are both equal to output_size. spatial_scale (float, optional): Multiplicative spatial scale factor to translate ROI coords from their input scale to the scale used when pooling. Default: 1.0 rois_num (Tensor): The number of RoIs in each image. Default: None name(str, optional): For detailed information, please refer to :ref:`api_guide_Name`. Usually name is no need to set and None by default. Returns: Tensor: The pooled feature, 4D-Tensor with the shape of [num_rois, C, output_size[0], output_size[1]]. Examples: .. code-block:: python import paddle paddle.enable_static() x = paddle.static.data( name='data', shape=[None, 256, 32, 32], dtype='float32') rois = paddle.static.data( name='rois', shape=[None, 4], dtype='float32') rois_num = paddle.static.data(name='rois_num', shape=[None], dtype='int32') pool_out = ops.roi_pool( input=x, rois=rois, output_size=(1, 1), spatial_scale=1.0, rois_num=rois_num) """ check_type(output_size, 'output_size', (int, tuple), 'roi_pool') if isinstance(output_size, int): output_size = (output_size, output_size) pooled_height, pooled_width = output_size if in_dygraph_mode(): assert rois_num is not None, "rois_num should not be None in dygraph mode." pool_out, argmaxes = core.ops.roi_pool( input, rois, rois_num, "pooled_height", pooled_height, "pooled_width", pooled_width, "spatial_scale", spatial_scale) return pool_out, argmaxes check_variable_and_dtype(input, 'input', ['float32'], 'roi_pool') check_variable_and_dtype(rois, 'rois', ['float32'], 'roi_pool') helper = LayerHelper('roi_pool', **locals()) dtype = helper.input_dtype() pool_out = helper.create_variable_for_type_inference(dtype) argmaxes = helper.create_variable_for_type_inference(dtype='int32') inputs = { "X": input, "ROIs": rois, } if rois_num is not None: inputs['RoisNum'] = rois_num helper.append_op( type="roi_pool", inputs=inputs, outputs={"Out": pool_out, "Argmax": argmaxes}, attrs={ "pooled_height": pooled_height, "pooled_width": pooled_width, "spatial_scale": spatial_scale }) return pool_out, argmaxes def roi_align(input, rois, output_size, spatial_scale=1.0, sampling_ratio=-1, rois_num=None, name=None): """ Region of interest align (also known as RoI align) is to perform bilinear interpolation on inputs of nonuniform sizes to obtain fixed-size feature maps (e.g. 7*7) Dividing each region proposal into equal-sized sections with the pooled_width and pooled_height. Location remains the origin result. In each ROI bin, the value of the four regularly sampled locations are computed directly through bilinear interpolation. The output is the mean of four locations. Thus avoid the misaligned problem. Args: input (Tensor): Input feature, 4D-Tensor with the shape of [N,C,H,W], where N is the batch size, C is the input channel, H is Height, W is weight. The data type is float32 or float64. rois (Tensor): ROIs (Regions of Interest) to pool over.It should be a 2-D Tensor or 2-D LoDTensor of shape (num_rois, 4), the lod level is 1. The data type is float32 or float64. Given as [[x1, y1, x2, y2], ...], (x1, y1) is the top left coordinates, and (x2, y2) is the bottom right coordinates. output_size (int or tuple[int, int]): The pooled output size(h, w), data type is int32. If int, h and w are both equal to output_size. spatial_scale (float32, optional): ${spatial_scale_comment} Default: 1.0 sampling_ratio(int32, optional): ${sampling_ratio_comment} Default: -1 rois_num (Tensor): The number of RoIs in each image. Default: None name(str, optional): For detailed information, please refer to :ref:`api_guide_Name`. Usually name is no need to set and None by default. Returns: Tensor: Output: The output of ROIAlignOp is a 4-D tensor with shape (num_rois, channels, pooled_h, pooled_w). The data type is float32 or float64. Examples: .. code-block:: python import paddle paddle.enable_static() x = paddle.static.data( name='data', shape=[None, 256, 32, 32], dtype='float32') rois = paddle.static.data( name='rois', shape=[None, 4], dtype='float32') rois_num = paddle.static.data(name='rois_num', shape=[None], dtype='int32') align_out = ops.roi_align(input=x, rois=rois, ouput_size=(7, 7), spatial_scale=0.5, sampling_ratio=-1, rois_num=rois_num) """ if isinstance(output_size, int): output_size = (output_size, output_size) pooled_height, pooled_width = output_size if in_dygraph_mode(): assert rois_num is not None, "rois_num should not be None in dygraph mode." align_out = core.ops.roi_align( input, rois, rois_num, "pooled_height", pooled_height, "pooled_width", pooled_width, "spatial_scale", spatial_scale, "sampling_ratio", sampling_ratio) return align_out check_variable_and_dtype(input, 'input', ['float32', 'float64'], 'roi_align') check_variable_and_dtype(rois, 'rois', ['float32', 'float64'], 'roi_align') helper = LayerHelper('roi_align', **locals()) dtype = helper.input_dtype() align_out = helper.create_variable_for_type_inference(dtype) inputs = { "X": input, "ROIs": rois, } if rois_num is not None: inputs['RoisNum'] = rois_num helper.append_op( type="roi_align", inputs=inputs, outputs={"Out": align_out}, attrs={ "pooled_height": pooled_height, "pooled_width": pooled_width, "spatial_scale": spatial_scale, "sampling_ratio": sampling_ratio }) return align_out def collect_fpn_proposals(multi_rois, multi_scores, min_level, max_level, post_nms_top_n, rois_num_per_level=None, name=None): """ **This OP only supports LoDTensor as input**. Concat multi-level RoIs (Region of Interest) and select N RoIs with respect to multi_scores. This operation performs the following steps: 1. Choose num_level RoIs and scores as input: num_level = max_level - min_level 2. Concat multi-level RoIs and scores 3. Sort scores and select post_nms_top_n scores 4. Gather RoIs by selected indices from scores 5. Re-sort RoIs by corresponding batch_id Args: multi_rois(list): List of RoIs to collect. Element in list is 2-D LoDTensor with shape [N, 4] and data type is float32 or float64, N is the number of RoIs. multi_scores(list): List of scores of RoIs to collect. Element in list is 2-D LoDTensor with shape [N, 1] and data type is float32 or float64, N is the number of RoIs. min_level(int): The lowest level of FPN layer to collect max_level(int): The highest level of FPN layer to collect post_nms_top_n(int): The number of selected RoIs rois_num_per_level(list, optional): The List of RoIs' numbers. Each element is 1-D Tensor which contains the RoIs' number of each image on each level and the shape is [B] and data type is int32, B is the number of images. If it is not None then return a 1-D Tensor contains the output RoIs' number of each image and the shape is [B]. Default: None name(str, optional): For detailed information, please refer to :ref:`api_guide_Name`. Usually name is no need to set and None by default. Returns: Variable: fpn_rois(Variable): 2-D LoDTensor with shape [N, 4] and data type is float32 or float64. Selected RoIs. rois_num(Tensor): 1-D Tensor contains the RoIs's number of each image. The shape is [B] and data type is int32. B is the number of images. Examples: .. code-block:: python import paddle.fluid as fluid import paddle paddle.enable_static() multi_rois = [] multi_scores = [] for i in range(4): multi_rois.append(paddle.static.data( name='roi_'+str(i), shape=[None, 4], dtype='float32', lod_level=1)) for i in range(4): multi_scores.append(paddle.static.data( name='score_'+str(i), shape=[None, 1], dtype='float32', lod_level=1)) fpn_rois = fluid.layers.collect_fpn_proposals( multi_rois=multi_rois, multi_scores=multi_scores, min_level=2, max_level=5, post_nms_top_n=2000) """ check_type(multi_rois, 'multi_rois', list, 'collect_fpn_proposals') check_type(multi_scores, 'multi_scores', list, 'collect_fpn_proposals') num_lvl = max_level - min_level + 1 input_rois = multi_rois[:num_lvl] input_scores = multi_scores[:num_lvl] if in_dygraph_mode(): assert rois_num_per_level is not None, "rois_num_per_level should not be None in dygraph mode." attrs = ('post_nms_topN', post_nms_top_n) output_rois, rois_num = core.ops.collect_fpn_proposals( input_rois, input_scores, rois_num_per_level, *attrs) helper = LayerHelper('collect_fpn_proposals', **locals()) dtype = helper.input_dtype('multi_rois') check_dtype(dtype, 'multi_rois', ['float32', 'float64'], 'collect_fpn_proposals') output_rois = helper.create_variable_for_type_inference(dtype) output_rois.stop_gradient = True inputs = { 'MultiLevelRois': input_rois, 'MultiLevelScores': input_scores, } outputs = {'FpnRois': output_rois} if rois_num_per_level is not None: inputs['MultiLevelRoIsNum'] = rois_num_per_level rois_num = helper.create_variable_for_type_inference(dtype='int32') rois_num.stop_gradient = True outputs['RoisNum'] = rois_num helper.append_op( type='collect_fpn_proposals', inputs=inputs, outputs=outputs, attrs={'post_nms_topN': post_nms_top_n}) if rois_num_per_level is not None: return output_rois, rois_num return output_rois def distribute_fpn_proposals(fpn_rois, min_level, max_level, refer_level, refer_scale, rois_num=None, name=None): """ **This op only takes LoDTensor as input.** In Feature Pyramid Networks (FPN) models, it is needed to distribute all proposals into different FPN level, with respect to scale of the proposals, the referring scale and the referring level. Besides, to restore the order of proposals, we return an array which indicates the original index of rois in current proposals. To compute FPN level for each roi, the formula is given as follows: .. math:: roi\_scale &= \sqrt{BBoxArea(fpn\_roi)} level = floor(&\log(\\frac{roi\_scale}{refer\_scale}) + refer\_level) where BBoxArea is a function to compute the area of each roi. Args: fpn_rois(Variable): 2-D Tensor with shape [N, 4] and data type is float32 or float64. The input fpn_rois. min_level(int32): The lowest level of FPN layer where the proposals come from. max_level(int32): The highest level of FPN layer where the proposals come from. refer_level(int32): The referring level of FPN layer with specified scale. refer_scale(int32): The referring scale of FPN layer with specified level. rois_num(Tensor): 1-D Tensor contains the number of RoIs in each image. The shape is [B] and data type is int32. B is the number of images. If it is not None then return a list of 1-D Tensor. Each element is the output RoIs' number of each image on the corresponding level and the shape is [B]. None by default. name(str, optional): For detailed information, please refer to :ref:`api_guide_Name`. Usually name is no need to set and None by default. Returns: Tuple: multi_rois(List) : A list of 2-D LoDTensor with shape [M, 4] and data type of float32 and float64. The length is max_level-min_level+1. The proposals in each FPN level. restore_ind(Variable): A 2-D Tensor with shape [N, 1], N is the number of total rois. The data type is int32. It is used to restore the order of fpn_rois. rois_num_per_level(List): A list of 1-D Tensor and each Tensor is the RoIs' number in each image on the corresponding level. The shape is [B] and data type of int32. B is the number of images Examples: .. code-block:: python import paddle.fluid as fluid import paddle paddle.enable_static() fpn_rois = paddle.static.data( name='data', shape=[None, 4], dtype='float32', lod_level=1) multi_rois, restore_ind = fluid.layers.distribute_fpn_proposals( fpn_rois=fpn_rois, min_level=2, max_level=5, refer_level=4, refer_scale=224) """ num_lvl = max_level - min_level + 1 if in_dygraph_mode(): assert rois_num is not None, "rois_num should not be None in dygraph mode." attrs = ('min_level', min_level, 'max_level', max_level, 'refer_level', refer_level, 'refer_scale', refer_scale) multi_rois, restore_ind, rois_num_per_level = core.ops.distribute_fpn_proposals( fpn_rois, rois_num, num_lvl, num_lvl, *attrs) return multi_rois, restore_ind, rois_num_per_level check_variable_and_dtype(fpn_rois, 'fpn_rois', ['float32', 'float64'], 'distribute_fpn_proposals') helper = LayerHelper('distribute_fpn_proposals', **locals()) dtype = helper.input_dtype('fpn_rois') multi_rois = [ helper.create_variable_for_type_inference(dtype) for i in range(num_lvl) ] restore_ind = helper.create_variable_for_type_inference(dtype='int32') inputs = {'FpnRois': fpn_rois} outputs = { 'MultiFpnRois': multi_rois, 'RestoreIndex': restore_ind, } if rois_num is not None: inputs['RoisNum'] = rois_num rois_num_per_level = [ helper.create_variable_for_type_inference(dtype='int32') for i in range(num_lvl) ] outputs['MultiLevelRoIsNum'] = rois_num_per_level helper.append_op( type='distribute_fpn_proposals', inputs=inputs, outputs=outputs, attrs={ 'min_level': min_level, 'max_level': max_level, 'refer_level': refer_level, 'refer_scale': refer_scale }) if rois_num is not None: return multi_rois, restore_ind, rois_num_per_level return multi_rois, restore_ind