architecture: CascadeRCNN use_gpu: true max_iters: 180000 log_iter: 50 save_dir: output snapshot_iter: 10000 pretrain_weights: https://paddlemodels.bj.bcebos.com/object_detection/dygraph/resnet50.pdparams metric: COCO weights: output/cascade_rcnn_r50_1x/model_final num_classes: 81 num_stages: 3 open_debug: False # Model Achitecture CascadeRCNN: # model anchor info flow anchor: AnchorRPN proposal: Proposal mask: Mask # model feat info flow backbone: ResNet rpn_head: RPNHead bbox_head: BBoxHead mask_head: MaskHead ResNet: norm_type: 'affine' depth: 50 freeze_at: 'res2' RPNHead: rpn_feat: name: RPNFeat feat_in: 1024 feat_out: 1024 anchor_per_position: 15 BBoxHead: bbox_feat: name: BBoxFeat feat_in: 1024 feat_out: 512 roi_extractor: resolution: 14 sampling_ratio: 0 spatial_scale: 0.0625 extractor_type: 'RoIAlign' MaskHead: mask_feat: name: MaskFeat feat_in: 2048 feat_out: 256 feat_in: 256 resolution: 14 AnchorRPN: anchor_generator: name: AnchorGeneratorRPN anchor_sizes: [32, 64, 128, 256, 512] aspect_ratios: [0.5, 1.0, 2.0] stride: [16.0, 16.0] variance: [1.0, 1.0, 1.0, 1.0] anchor_target_generator: name: AnchorTargetGeneratorRPN batch_size_per_im: 256 fg_fraction: 0.5 negative_overlap: 0.3 positive_overlap: 0.7 straddle_thresh: 0.0 Proposal: proposal_generator: name: ProposalGenerator min_size: 0.0 nms_thresh: 0.7 train_pre_nms_top_n: 2000 train_post_nms_top_n: 2000 infer_pre_nms_top_n: 2000 infer_post_nms_top_n: 2000 return_rois_num: True proposal_target_generator: name: ProposalTargetGenerator batch_size_per_im: 512 bbox_reg_weights: [[0.1, 0.1, 0.2, 0.2],[0.05, 0.05, 0.1, 0.1],[0.333333, 0.333333, 0.666666, 0.666666]] bg_thresh_hi: [0.5, 0.6, 0.7] bg_thresh_lo: [0.0, 0.0, 0.0] fg_thresh: [0.5, 0.6, 0.7] fg_fraction: 0.25 bbox_post_process: # used in infer name: BBoxPostProcess # decode -> clip -> nms decode_clip_nms: name: DecodeClipNms keep_top_k: 100 score_threshold: 0.05 nms_threshold: 0.5 Mask: mask_target_generator: name: MaskTargetGenerator resolution: 14 mask_post_process: name: MaskPostProcess # Train LearningRate: base_lr: 0.01 schedulers: - !PiecewiseDecay gamma: 0.1 milestones: [120000, 160000] - !LinearWarmup start_factor: 0.3333333333333333 steps: 500 OptimizerBuilder: optimizer: momentum: 0.9 type: Momentum regularizer: factor: 0.0001 type: L2 _READER_: 'mask_reader.yml'