# Benchmark
Machine:
- Server: Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz, 2 Sockets, 20 Cores per socket
- Laptop: TBD
System: CentOS release 6.3 (Final), Docker 1.12.1.
PaddlePaddle: (TODO: will rerun after 0.11.0)
- paddlepaddle/paddle:latest (for MKLML and MKL-DNN)
  - MKL-DNN tag v0.11
  - MKLML 2018.0.1.20171007
- paddlepaddle/paddle:latest-openblas (for OpenBLAS)
  - OpenBLAS v0.2.20
	 
On each machine, we will test and compare the performance of training on single node using MKL-DNN / MKLML / OpenBLAS respectively.
## Benchmark Model
### Server
#### Training
Test on batch size 64, 128, 256 on Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz
Input image size - 3 * 224 * 224, Time: images/second
- VGG-19
| BatchSize    | 64    | 128  | 256     |
|--------------|-------| -----| --------|
| OpenBLAS     | 7.80  | 9.00  | 10.80  | 
| MKLML        | 12.12 | 13.70 | 16.18  |
| MKL-DNN      | 28.46 | 29.83 | 30.44  |
 - ResNet-50
| BatchSize    | 64    | 128   | 256    |
|--------------|-------| ------| -------|
| OpenBLAS     | 25.22 | 25.68 | 27.12  | 
| MKLML        | 32.52 | 31.89 | 33.12  |
| MKL-DNN      | 81.69 | 82.35 | 84.08  |
 - ResNet-50
| BatchSize    | 64    | 128   | 256    |
|--------------|-------| ------| -------|
| OpenBLAS     | 25.22 | 25.68 | 27.12  | 
| MKLML        | 32.52 | 31.89 | 33.12  |
| MKL-DNN      | 81.69 | 82.35 | 84.08  |
 - GoogLeNet
| BatchSize    | 64    | 128   | 256    |
|--------------|-------| ------| -------|
| OpenBLAS     | 89.52 | 96.97 | 108.25 | 
| MKLML        | 128.46| 137.89| 158.63 |
| MKL-DNN      | 250.46| 264.83| 269.50 |
 - GoogLeNet
| BatchSize    | 64    | 128   | 256    |
|--------------|-------| ------| -------|
| OpenBLAS     | 89.52 | 96.97 | 108.25 | 
| MKLML        | 128.46| 137.89| 158.63 |
| MKL-DNN      | 250.46| 264.83| 269.50 |
 #### Inference
Test on batch size 1, 2, 4, 8, 16 on Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz
- VGG-19
| BatchSize | 1     | 2     | 4     | 8     | 16    |
|-----------|-------|-------|-------|-------|-------|
| OpenBLAS  | 1.07  | 1.08  | 1.06  | 0.88  | 0.65  |
| MKLML     | 5.58  | 9.80  | 15.15 | 21.21 | 28.67 |
| MKL-DNN   | 75.07 | 88.64 | 82.58 | 92.29 | 96.75 |
- ResNet-50
| BatchSize | 1     | 2      | 4      | 8      | 16     |
|-----------|-------|--------|--------|--------|--------|
| OpenBLAS  | 3.35  | 3.19   | 3.09   | 2.55   | 1.96   |
| MKLML     | 6.33  | 12.02  | 22.88  | 40.53  | 63.09  |
| MKL-DNN   | 107.83| 148.84 | 177.78 | 189.35 | 217.69 |
- GoogLeNet
| BatchSize | 1      | 2      | 4      | 8      | 16     |
|-----------|--------|--------|--------|--------|--------|
| OpenBLAS  | 12.04  | 11.31  | 10.00  | 9.07   | 4.34   |
| MKLML     | 22.74  | 41.56  | 81.22  | 133.47 | 210.53 |
| MKL-DNN   | 175.10 | 272.92 | 450.70 | 512.00 | 600.94 |
### Laptop
TBD
#### Inference
Test on batch size 1, 2, 4, 8, 16 on Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz
- VGG-19
| BatchSize | 1     | 2     | 4     | 8     | 16    |
|-----------|-------|-------|-------|-------|-------|
| OpenBLAS  | 1.07  | 1.08  | 1.06  | 0.88  | 0.65  |
| MKLML     | 5.58  | 9.80  | 15.15 | 21.21 | 28.67 |
| MKL-DNN   | 75.07 | 88.64 | 82.58 | 92.29 | 96.75 |
- ResNet-50
| BatchSize | 1     | 2      | 4      | 8      | 16     |
|-----------|-------|--------|--------|--------|--------|
| OpenBLAS  | 3.35  | 3.19   | 3.09   | 2.55   | 1.96   |
| MKLML     | 6.33  | 12.02  | 22.88  | 40.53  | 63.09  |
| MKL-DNN   | 107.83| 148.84 | 177.78 | 189.35 | 217.69 |
- GoogLeNet
| BatchSize | 1      | 2      | 4      | 8      | 16     |
|-----------|--------|--------|--------|--------|--------|
| OpenBLAS  | 12.04  | 11.31  | 10.00  | 9.07   | 4.34   |
| MKLML     | 22.74  | 41.56  | 81.22  | 133.47 | 210.53 |
| MKL-DNN   | 175.10 | 272.92 | 450.70 | 512.00 | 600.94 |
### Laptop
TBD