_BASE_: [ '../datasets/coco_detection.yml', '../runtime.yml', '_base_/fcos_r50_fpn.yml', '_base_/optimizer_1x.yml', '_base_/fcos_reader.yml', ] weights: output/fcos_r50_fpn_iou_multiscale_2x_coco_010/model_final TrainReader: sample_transforms: - Decode: {} - RandomResize: {target_size: [[640, 1333], [672, 1333], [704, 1333], [736, 1333], [768, 1333], [800, 1333]], keep_ratio: True, interp: 1} - NormalizeImage: {mean: [0.485, 0.456, 0.406], std: [0.229, 0.224, 0.225], is_scale: True} - RandomFlip: {} batch_transforms: - Permute: {} - PadBatch: {pad_to_stride: 32} - Gt2FCOSTarget: object_sizes_boundary: [64, 128, 256, 512] center_sampling_radius: 1.5 downsample_ratios: [8, 16, 32, 64, 128] norm_reg_targets: True batch_size: 2 shuffle: True drop_last: True use_shared_memory: True EvalReader: sample_transforms: - Decode: {} - Resize: {target_size: [800, 1333], keep_ratio: True, interp: 1} - NormalizeImage: {mean: [0.485, 0.456, 0.406], std: [0.229, 0.224, 0.225], is_scale: True} - Permute: {} batch_transforms: - PadBatch: {pad_to_stride: 32} batch_size: 1 TestReader: sample_transforms: - Decode: {} - Resize: {target_size: [800, 1333], keep_ratio: True, interp: 1} - NormalizeImage: {mean: [0.485, 0.456, 0.406], std: [0.229, 0.224, 0.225], is_scale: True} - Permute: {} batch_transforms: - PadBatch: {pad_to_stride: 32} batch_size: 1 fuse_normalize: True epoch: 24 LearningRate: base_lr: 0.01 schedulers: - !PiecewiseDecay gamma: 0.1 milestones: [16, 22] - !LinearWarmup start_factor: 0.001 steps: 1000 FCOSHead: fcos_feat: name: FCOSFeat feat_in: 256 feat_out: 256 num_convs: 4 norm_type: "gn" use_dcn: False fpn_stride: [8, 16, 32, 64, 128] prior_prob: 0.01 norm_reg_targets: True centerness_on_reg: True fcos_loss: name: FCOSLoss loss_alpha: 0.25 loss_gamma: 2.0 iou_loss_type: "giou" reg_weights: 1.0 quality: "iou" # default 'centerness' nms: name: MultiClassNMS nms_top_k: 1000 keep_top_k: 100 score_threshold: 0.025 nms_threshold: 0.6