from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import paddle import paddle.nn as nn from ppdet.core.workspace import register __all__ = ['BaseArch'] @register class BaseArch(nn.Layer): def __init__(self): super(BaseArch, self).__init__() def forward(self, input_tensor=None, data=None, input_def=None, mode='infer'): if input_tensor is None: assert data is not None and input_def is not None self.inputs = self.build_inputs(data, input_def) else: self.inputs = input_tensor self.inputs['mode'] = mode self.model_arch() if mode == 'train': out = self.get_loss() elif mode == 'infer': out = self.get_pred() else: out = None raise "Now, only support train and infer mode!" return out def build_inputs(self, data, input_def): inputs = {} for i, k in enumerate(input_def): inputs[k] = data[i] return inputs def model_arch(self): raise NotImplementedError("Should implement model_arch method!") def get_loss(self, ): raise NotImplementedError("Should implement get_loss method!") def get_pred(self, ): raise NotImplementedError("Should implement get_pred method!")