# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import argparse import time import paddle import paddle.fluid as fluid import paddle.fluid.profiler as profiler SEED = 1 DTYPE = "float32" # random seed must set before configuring the network. # fluid.default_startup_program().random_seed = SEED def parse_args(): parser = argparse.ArgumentParser("mnist model benchmark.") parser.add_argument( '--batch_size', type=int, default=128, help='The minibatch size.') parser.add_argument( '--skip_batch_num', type=int, default=5, help='The first num of minibatch num to skip, for better performance test' ) parser.add_argument( '--iterations', type=int, default=35, help='The number of minibatches.') parser.add_argument( '--pass_num', type=int, default=5, help='The number of passes.') parser.add_argument( '--device', type=str, default='GPU', choices=['CPU', 'GPU'], help='The device type.') parser.add_argument( '--infer_only', action='store_true', help='If set, run forward only.') parser.add_argument( '--use_cprof', action='store_true', help='If set, use cProfile.') parser.add_argument( '--use_nvprof', action='store_true', help='If set, use nvprof for CUDA.') parser.add_argument( '--with_test', action='store_true', help='If set, test the testset during training.') args = parser.parse_args() return args def cnn_model(data): conv_pool_1 = fluid.nets.simple_img_conv_pool( input=data, filter_size=5, num_filters=20, pool_size=2, pool_stride=2, act="relu") conv_pool_2 = fluid.nets.simple_img_conv_pool( input=conv_pool_1, filter_size=5, num_filters=50, pool_size=2, pool_stride=2, act="relu") # TODO(dzhwinter) : refine the initializer and random seed settting SIZE = 10 input_shape = conv_pool_2.shape param_shape = [reduce(lambda a, b: a * b, input_shape[1:], 1)] + [SIZE] scale = (2.0 / (param_shape[0]**2 * SIZE))**0.5 predict = fluid.layers.fc( input=conv_pool_2, size=SIZE, act="softmax", param_attr=fluid.param_attr.ParamAttr( initializer=fluid.initializer.NormalInitializer( loc=0.0, scale=scale))) return predict def eval_test(exe, batch_acc, batch_size_tensor, inference_program): test_reader = paddle.batch( paddle.dataset.mnist.test(), batch_size=args.batch_size) test_pass_acc = fluid.average.WeightedAverage() for batch_id, data in enumerate(test_reader()): img_data = np.array(map(lambda x: x[0].reshape([1, 28, 28]), data)).astype(DTYPE) y_data = np.array(map(lambda x: x[1], data)).astype("int64") y_data = y_data.reshape([len(y_data), 1]) acc, weight = exe.run(inference_program, feed={"pixel": img_data, "label": y_data}, fetch_list=[batch_acc, batch_size_tensor]) test_pass_acc.add(value=acc, weight=weight) pass_acc = test_pass_acc.eval() return pass_acc def run_benchmark(model, args): if args.use_cprof: pr = cProfile.Profile() pr.enable() start_time = time.time() # Input data images = fluid.layers.data(name='pixel', shape=[1, 28, 28], dtype=DTYPE) label = fluid.layers.data(name='label', shape=[1], dtype='int64') # Train program predict = model(images) cost = fluid.layers.cross_entropy(input=predict, label=label) avg_cost = fluid.layers.mean(x=cost) # Evaluator batch_size_tensor = fluid.layers.create_tensor(dtype='int64') batch_acc = fluid.layers.accuracy( input=predict, label=label, total=batch_size_tensor) # inference program inference_program = fluid.default_main_program().clone() # Optimization opt = fluid.optimizer.AdamOptimizer( learning_rate=0.001, beta1=0.9, beta2=0.999) opt.minimize(avg_cost) fluid.memory_optimize(fluid.default_main_program()) # Initialize executor place = fluid.CPUPlace() if args.device == 'CPU' else fluid.CUDAPlace(0) exe = fluid.Executor(place) # Parameter initialization exe.run(fluid.default_startup_program()) # Reader train_reader = paddle.batch( paddle.dataset.mnist.train(), batch_size=args.batch_size) accuracy = fluid.metrics.Accuracy() train_exe = fluid.ParallelExecutor(use_cuda=True, loss_name=avg_cost.name) iters, num_samples, start_time = 0, 0, time.time() for pass_id in range(args.pass_num): accuracy.reset() train_accs = [] train_losses = [] for batch_id, data in enumerate(train_reader()): if iters == args.skip_batch_num: start_time = time.time() num_samples = 0 if iters == args.iterations: break img_data = np.array( map(lambda x: x[0].reshape([1, 28, 28]), data)).astype(DTYPE) y_data = np.array(map(lambda x: x[1], data)).astype("int64") y_data = y_data.reshape([len(y_data), 1]) outs = train_exe.run( feed={"pixel": img_data, "label": y_data}, fetch_list=[ avg_cost.name, batch_acc.name, batch_size_tensor.name ] ) # The accuracy is the accumulation of batches, but not the current batch. accuracy.update( value=np.array(np.mean(outs[1])), weight=np.mean(np.array(outs[2]))) iters += 1 num_samples += len(y_data) loss = np.mean(np.array(outs[0])) acc = np.mean(np.array(outs[1])) train_losses.append(loss) train_accs.append(acc) print("Pass: %d, Iter: %d, Loss: %f, Accuracy: %f" % (pass_id, iters, loss, acc)) print("Pass: %d, Loss: %f, Train Accuray: %f\n" % (pass_id, np.mean(train_losses), np.mean(train_accs))) train_elapsed = time.time() - start_time examples_per_sec = num_samples / train_elapsed print('\nTotal examples: %d, total time: %.5f, %.5f examples/sed\n' % (num_samples, train_elapsed, examples_per_sec)) # evaluation if args.with_test: test_avg_acc = eval_test(exe, batch_acc, batch_size_tensor, inference_program) exit(0) def print_arguments(args): vars(args)['use_nvprof'] = (vars(args)['use_nvprof'] and vars(args)['device'] == 'GPU') print('----------- mnist Configuration Arguments -----------') for arg, value in sorted(vars(args).iteritems()): print('%s: %s' % (arg, value)) print('------------------------------------------------') if __name__ == '__main__': args = parse_args() print_arguments(args) if args.use_nvprof and args.device == 'GPU': with profiler.cuda_profiler("cuda_profiler.txt", 'csv') as nvprof: run_benchmark(cnn_model, args) else: run_benchmark(cnn_model, args)