architecture: SOLOv2 pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_cos_pretrained.tar load_static_weights: True SOLOv2: backbone: ResNet neck: FPN solov2_head: SOLOv2Head mask_head: SOLOv2MaskHead ResNet: # index 0 stands for res2 depth: 50 norm_type: bn freeze_at: 0 return_idx: [0,1,2,3] num_stages: 4 FPN: in_channels: [256, 512, 1024, 2048] out_channel: 256 min_level: 0 max_level: 4 spatial_scale: [0.25, 0.125, 0.0625, 0.03125] SOLOv2Head: seg_feat_channels: 512 stacked_convs: 4 num_grids: [40, 36, 24, 16, 12] kernel_out_channels: 256 solov2_loss: SOLOv2Loss mask_nms: MaskMatrixNMS SOLOv2MaskHead: in_channels: 256 mid_channels: 128 out_channels: 256 start_level: 0 end_level: 3 SOLOv2Loss: ins_loss_weight: 3.0 focal_loss_gamma: 2.0 focal_loss_alpha: 0.25 MaskMatrixNMS: pre_nms_top_n: 500 post_nms_top_n: 100