# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import paddle import paddle.nn.functional as F def align_weak_strong_shape(data_weak, data_strong): max_shape_x = max(data_strong['image'].shape[2], data_weak['image'].shape[2]) max_shape_y = max(data_strong['image'].shape[3], data_weak['image'].shape[3]) scale_x_s = max_shape_x / data_strong['image'].shape[2] scale_y_s = max_shape_y / data_strong['image'].shape[3] scale_x_w = max_shape_x / data_weak['image'].shape[2] scale_y_w = max_shape_y / data_weak['image'].shape[3] target_size = [max_shape_x, max_shape_y] if scale_x_s != 1 or scale_y_s != 1: data_strong['image'] = F.interpolate( data_strong['image'], size=target_size, mode='bilinear', align_corners=False) if 'gt_bbox' in data_strong: gt_bboxes = data_strong['gt_bbox'] for i in range(len(gt_bboxes)): if len(gt_bboxes[i]) > 0: gt_bboxes[i][:, 0::2] = gt_bboxes[i][:, 0::2] * scale_x_s gt_bboxes[i][:, 1::2] = gt_bboxes[i][:, 1::2] * scale_y_s data_strong['gt_bbox'] = gt_bboxes if scale_x_w != 1 or scale_y_w != 1: data_weak['image'] = F.interpolate( data_weak['image'], size=target_size, mode='bilinear', align_corners=False) if 'gt_bbox' in data_weak: gt_bboxes = data_weak['gt_bbox'] for i in range(len(gt_bboxes)): if len(gt_bboxes[i]) > 0: gt_bboxes[i][:, 0::2] = gt_bboxes[i][:, 0::2] * scale_x_w gt_bboxes[i][:, 1::2] = gt_bboxes[i][:, 1::2] * scale_y_w data_weak['gt_bbox'] = gt_bboxes return data_weak, data_strong def permute_to_N_HWA_K(tensor, K): """ Transpose/reshape a tensor from (N, (A x K), H, W) to (N, (HxWxA), K) """ assert tensor.dim() == 4, tensor.shape N, _, H, W = tensor.shape tensor = tensor.reshape([N, -1, K, H, W]).transpose([0, 3, 4, 1, 2]) tensor = tensor.reshape([N, -1, K]) return tensor def QFLv2(pred_sigmoid, teacher_sigmoid, weight=None, beta=2.0, reduction='mean'): pt = pred_sigmoid zerolabel = paddle.zeros_like(pt) loss = F.binary_cross_entropy( pred_sigmoid, zerolabel, reduction='none') * pt.pow(beta) pos = weight > 0 pt = teacher_sigmoid[pos] - pred_sigmoid[pos] loss[pos] = F.binary_cross_entropy( pred_sigmoid[pos], teacher_sigmoid[pos], reduction='none') * pt.pow(beta) valid = weight >= 0 if reduction == "mean": loss = loss[valid].mean() elif reduction == "sum": loss = loss[valid].sum() return loss