# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function from .. import layers from .. import unique_name __all__ = [ 'ExponentialDecay', 'NaturalExpDecay', 'InverseTimeDecay', 'PolynomialDecay', 'PiecewiseDecay', 'NoamDecay' ] class LearningRateDecay(object): """ Base class of learning rate decay """ def __init__(self, step, dtype='float32'): self.step = step self.dtype = dtype def __call__(self): lr = self.step() if isinstance(lr, float): lr = self._create_lr_var(lr) self.step += 1 return lr def create_lr_var(lr): lr = layers.create_global_var( name=unique_name.generate("learning_rate"), shape=[1], value=float(lr), dtype=self.dtype, persistable=True) def step(self): raise NotImplementedError() class PiecewiseDecay(object): def __init__(self, boundaries, values, step, dtype='float32'): super(PiecewiseDecay, self).__init__(step, dtype) self.boundaries = boundaries self.values = values self.vars = [] for value in values: self.vars.append(self.create_lr_var(value)) def step(self): for i in range(len(boundaries)): if self.step <= boundaries[i]: return self.vars[i] return self.vars[len(values) - 1]