// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/inference/anakin/convert/batch_norm.h" #include #include #include #include #include using anakin::graph::GraphGlobalMem; using anakin::AK_FLOAT; using anakin::saber::NV; using anakin::saber::Shape; namespace paddle { namespace inference { namespace anakin { void BatchNormOpConverter::operator()(const framework::proto::OpDesc &op, const framework::Scope &scope, bool test_mode) { framework::OpDesc op_desc(op, nullptr); PADDLE_ENFORCE_EQ(op_desc.Output("Y").size(), 1); std::map inputs; for (auto k : {"X", "Scale", "Bias", "Mean", "Variance"}) { PADDLE_ENFORCE_EQ(op_desc.Input(k).size(), 1UL); auto v = op_desc.Input(k).front(); inputs.insert({k, v}); } auto output = op_desc.Output("Y").front(); auto op_name = op_desc.Type() + ":" + op_desc.Output("Y").front(); auto epsilon = boost::get(op_desc.GetAttr("epsilon")); auto bn_op_name = op_name + ":bn"; auto bn_output = bn_op_name + "_output"; engine_->AddOp(bn_op_name, "BatchNorm", {inputs["X"]}, {bn_output}); engine_->AddOpAttr(bn_op_name, "epsilon", epsilon); auto scale_op_name = op_name + ":scale"; auto get_lod_tensor = [this, &scope, &op_name](const std::string &var_name, framework::LoDTensor *tensor) { auto *v = scope.FindVar(var_name); PADDLE_ENFORCE_NOT_NULL(v); auto *t = v->GetMutable(); tensor->Resize(t->dims()); TensorCopySync(*t, platform::CPUPlace(), tensor); }; framework::LoDTensor bias_t; framework::LoDTensor mean_t; framework::LoDTensor scale_t; framework::LoDTensor variance_t; get_lod_tensor(inputs["Bias"], &bias_t); get_lod_tensor(inputs["Mean"], &mean_t); get_lod_tensor(inputs["Scale"], &scale_t); get_lod_tensor(inputs["Variance"], &variance_t); auto fill_shape = [](size_t n, std::vector shape) { shape.insert(shape.begin(), 1); if (shape.size() < n) { shape.insert(shape.end(), n - shape.size(), 1); } return shape; }; Shape shape1(fill_shape(4, framework::vectorize2int(mean_t.dims()))); Shape shape2(fill_shape(4, framework::vectorize2int(variance_t.dims()))); auto *weight1 = GraphGlobalMem::Global().template new_block(shape1); auto *mean_data = static_cast(weight1->h_tensor().mutable_data()); std::copy_n(mean_t.data(), mean_t.numel(), mean_data); engine_->AddOpAttr(bn_op_name, "weight_1", *weight1); auto *weight2 = GraphGlobalMem::Global().template new_block(shape2); auto *variance_data = static_cast(weight2->h_tensor().mutable_data()); std::copy_n(variance_t.data(), variance_t.numel(), variance_data); engine_->AddOpAttr(bn_op_name, "weight_2", *weight2); Shape shape3(std::vector({1, 1, 1, 1})); auto *weight3 = GraphGlobalMem::Global().template new_block(shape3); auto *alpha_data = static_cast(weight3->h_tensor().mutable_data()); float weight3_data[] = {1}; std::copy(std::begin(weight3_data), std::end(weight3_data), alpha_data); engine_->AddOpAttr(bn_op_name, "weight_3", *weight3); Shape scale_shape(fill_shape(4, framework::vectorize2int(scale_t.dims()))); auto *scale = GraphGlobalMem::Global().template new_block(scale_shape); auto *scale_data = static_cast(scale->h_tensor().mutable_data()); std::copy_n(scale_t.data(), scale_t.numel(), scale_data); Shape bias_shape(fill_shape(4, framework::vectorize2int(bias_t.dims()))); auto *bias = GraphGlobalMem::Global().template new_block(bias_shape); auto *bias_data = static_cast(bias->h_tensor().mutable_data()); std::copy_n(bias_t.data(), bias_t.numel(), bias_data); engine_->AddOp(scale_op_name, "Scale", {bn_output}, {output}); engine_->AddOpAttr(scale_op_name, "axis", 1); engine_->AddOpAttr(scale_op_name, "num_axes", 1); engine_->AddOpAttr(scale_op_name, "bias_term", true); engine_->AddOpAttr(scale_op_name, "weight_1", *scale); engine_->AddOpAttr(scale_op_name, "weight_2", *bias); } } // namespace anakin } // namespace inference } // namespace paddle REGISTER_ANAKIN_OP_CONVERTER(batch_norm, BatchNormOpConverter);