from paddle.trainer_config_helpers import * settings(learning_rate=1e-4, batch_size=1000) a = data_layer(name='feature_a', size=200) b = data_layer(name='feature_b', size=200) fc_param = ParamAttr(name='fc_param', initial_max=1.0, initial_min=-1.0) bias_param = ParamAttr(name='bias_param', initial_mean=0.0, initial_std=0.0) softmax_param = ParamAttr( name='softmax_param', initial_max=1.0, initial_min=-1.0) hidden_a = fc_layer( input=a, size=200, param_attr=fc_param, bias_attr=bias_param) hidden_b = fc_layer( input=b, size=200, param_attr=fc_param, bias_attr=bias_param) predict = fc_layer( input=[hidden_a, hidden_b], param_attr=[softmax_param, softmax_param], bias_attr=False, size=10, act=SoftmaxActivation()) outputs( classification_cost( input=predict, label=data_layer( name='label', size=10)))