# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import time import yaml import glob from functools import reduce from PIL import Image import cv2 import numpy as np import math import paddle from paddle.inference import Config from paddle.inference import create_predictor from benchmark_utils import PaddleInferBenchmark from preprocess import preprocess, Resize, NormalizeImage, Permute, PadStride from visualize import visualize_box_mask from utils import argsparser, Timer, get_current_memory_mb # Global dictionary SUPPORT_MODELS = { 'YOLO', 'RCNN', 'SSD', 'FCOS', 'SOLOv2', 'TTFNet', 'S2ANet', } class Detector(object): """ Args: config (object): config of model, defined by `Config(model_dir)` model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml use_gpu (bool): whether use gpu run_mode (str): mode of running(fluid/trt_fp32/trt_fp16) batch_size (int): size of pre batch in inference trt_min_shape (int): min shape for dynamic shape in trt trt_max_shape (int): max shape for dynamic shape in trt trt_opt_shape (int): opt shape for dynamic shape in trt run_mode (str): mode of running(fluid/trt_fp32/trt_fp16) threshold (float): threshold to reserve the result for output. """ def __init__(self, pred_config, model_dir, use_gpu=False, run_mode='fluid', batch_size=1, trt_min_shape=1, trt_max_shape=1280, trt_opt_shape=640, trt_calib_mode=False, cpu_threads=1, enable_mkldnn=False): self.pred_config = pred_config self.predictor, self.config = load_predictor( model_dir, run_mode=run_mode, batch_size=batch_size, min_subgraph_size=self.pred_config.min_subgraph_size, use_gpu=use_gpu, use_dynamic_shape=self.pred_config.use_dynamic_shape, trt_min_shape=trt_min_shape, trt_max_shape=trt_max_shape, trt_opt_shape=trt_opt_shape, trt_calib_mode=trt_calib_mode, cpu_threads=cpu_threads, enable_mkldnn=enable_mkldnn) self.det_times = Timer() self.cpu_mem, self.gpu_mem, self.gpu_util = 0, 0, 0 def preprocess(self, image_list): preprocess_ops = [] for op_info in self.pred_config.preprocess_infos: new_op_info = op_info.copy() op_type = new_op_info.pop('type') preprocess_ops.append(eval(op_type)(**new_op_info)) input_im_lst = [] input_im_info_lst = [] for im_path in image_list: im, im_info = preprocess(im_path, preprocess_ops) input_im_lst.append(im) input_im_info_lst.append(im_info) inputs = create_inputs(input_im_lst, input_im_info_lst) return inputs def postprocess(self, np_boxes, np_masks, inputs, np_boxes_num, threshold=0.5): # postprocess output of predictor results = {} if self.pred_config.arch in ['Face']: h, w = inputs['im_shape'] scale_y, scale_x = inputs['scale_factor'] w, h = float(h) / scale_y, float(w) / scale_x np_boxes[:, 2] *= h np_boxes[:, 3] *= w np_boxes[:, 4] *= h np_boxes[:, 5] *= w results['boxes'] = np_boxes results['boxes_num'] = np_boxes_num if np_masks is not None: results['masks'] = np_masks return results def predict(self, image_list, threshold=0.5, warmup=0, repeats=1): ''' Args: image_list (list): ,list of image threshold (float): threshold of predicted box' score Returns: results (dict): include 'boxes': np.ndarray: shape:[N,6], N: number of box, matix element:[class, score, x_min, y_min, x_max, y_max] MaskRCNN's results include 'masks': np.ndarray: shape: [N, im_h, im_w] ''' self.det_times.preprocess_time_s.start() inputs = self.preprocess(image_list) self.det_times.preprocess_time_s.end() np_boxes, np_masks = None, None input_names = self.predictor.get_input_names() for i in range(len(input_names)): input_tensor = self.predictor.get_input_handle(input_names[i]) input_tensor.copy_from_cpu(inputs[input_names[i]]) for i in range(warmup): self.predictor.run() output_names = self.predictor.get_output_names() boxes_tensor = self.predictor.get_output_handle(output_names[0]) np_boxes = boxes_tensor.copy_to_cpu() if self.pred_config.mask: masks_tensor = self.predictor.get_output_handle(output_names[2]) np_masks = masks_tensor.copy_to_cpu() self.det_times.inference_time_s.start() for i in range(repeats): self.predictor.run() output_names = self.predictor.get_output_names() boxes_tensor = self.predictor.get_output_handle(output_names[0]) np_boxes = boxes_tensor.copy_to_cpu() boxes_num = self.predictor.get_output_handle(output_names[1]) np_boxes_num = boxes_num.copy_to_cpu() if self.pred_config.mask: masks_tensor = self.predictor.get_output_handle(output_names[2]) np_masks = masks_tensor.copy_to_cpu() self.det_times.inference_time_s.end(repeats=repeats) self.det_times.postprocess_time_s.start() results = [] if reduce(lambda x, y: x * y, np_boxes.shape) < 6: print('[WARNNING] No object detected.') results = {'boxes': np.array([]), 'boxes_num': [0]} else: results = self.postprocess( np_boxes, np_masks, inputs, np_boxes_num, threshold=threshold) self.det_times.postprocess_time_s.end() self.det_times.img_num += len(image_list) return results class DetectorSOLOv2(Detector): """ Args: config (object): config of model, defined by `Config(model_dir)` model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml use_gpu (bool): whether use gpu run_mode (str): mode of running(fluid/trt_fp32/trt_fp16) batch_size (int): size of pre batch in inference trt_min_shape (int): min shape for dynamic shape in trt trt_max_shape (int): max shape for dynamic shape in trt trt_opt_shape (int): opt shape for dynamic shape in trt threshold (float): threshold to reserve the result for output. """ def __init__(self, pred_config, model_dir, use_gpu=False, run_mode='fluid', batch_size=1, trt_min_shape=1, trt_max_shape=1280, trt_opt_shape=640, trt_calib_mode=False, cpu_threads=1, enable_mkldnn=False): self.pred_config = pred_config self.predictor, self.config = load_predictor( model_dir, run_mode=run_mode, batch_size=batch_size, min_subgraph_size=self.pred_config.min_subgraph_size, use_gpu=use_gpu, use_dynamic_shape=self.pred_config.use_dynamic_shape, trt_min_shape=trt_min_shape, trt_max_shape=trt_max_shape, trt_opt_shape=trt_opt_shape, trt_calib_mode=trt_calib_mode, cpu_threads=cpu_threads, enable_mkldnn=enable_mkldnn) self.det_times = Timer() def predict(self, image, threshold=0.5, warmup=0, repeats=1): ''' Args: image (str/np.ndarray): path of image/ np.ndarray read by cv2 threshold (float): threshold of predicted box' score Returns: results (dict): 'segm': np.ndarray,shape:[N, im_h, im_w] 'cate_label': label of segm, shape:[N] 'cate_score': confidence score of segm, shape:[N] ''' self.det_times.preprocess_time_s.start() inputs = self.preprocess(image) self.det_times.preprocess_time_s.end() np_label, np_score, np_segms = None, None, None input_names = self.predictor.get_input_names() for i in range(len(input_names)): input_tensor = self.predictor.get_input_handle(input_names[i]) input_tensor.copy_from_cpu(inputs[input_names[i]]) for i in range(warmup): self.predictor.run() output_names = self.predictor.get_output_names() np_label = self.predictor.get_output_handle(output_names[ 1]).copy_to_cpu() np_score = self.predictor.get_output_handle(output_names[ 2]).copy_to_cpu() np_segms = self.predictor.get_output_handle(output_names[ 3]).copy_to_cpu() self.det_times.inference_time_s.start() for i in range(repeats): self.predictor.run() output_names = self.predictor.get_output_names() np_label = self.predictor.get_output_handle(output_names[ 1]).copy_to_cpu() np_score = self.predictor.get_output_handle(output_names[ 2]).copy_to_cpu() np_segms = self.predictor.get_output_handle(output_names[ 3]).copy_to_cpu() self.det_times.inference_time_s.end(repeats=repeats) self.det_times.img_num += 1 return dict(segm=np_segms, label=np_label, score=np_score) def create_inputs(imgs, im_info): """generate input for different model type Args: im (np.ndarray): image (np.ndarray) im_info (dict): info of image Returns: inputs (dict): input of model """ inputs = {} im_shape = [] scale_factor = [] for e in im_info: im_shape.append(np.array((e['im_shape'], )).astype('float32')) scale_factor.append(np.array((e['scale_factor'], )).astype('float32')) origin_scale_factor = np.concatenate(scale_factor, axis=0) imgs_shape = [[e.shape[1], e.shape[2]] for e in imgs] max_shape_h = max([e[0] for e in imgs_shape]) max_shape_w = max([e[1] for e in imgs_shape]) padding_imgs = [] padding_imgs_shape = [] padding_imgs_scale = [] for img in imgs: im_c, im_h, im_w = img.shape[:] padding_im = np.zeros( (im_c, max_shape_h, max_shape_w), dtype=np.float32) padding_im[:, :im_h, :im_w] = img padding_imgs.append(padding_im) padding_imgs_shape.append( np.array([max_shape_h, max_shape_w]).astype('float32')) rescale = [ float(max_shape_h) / float(im_h), float(max_shape_w) / float(im_w) ] padding_imgs_scale.append(np.array(rescale).astype('float32')) inputs['image'] = np.stack(padding_imgs, axis=0) inputs['im_shape'] = np.stack(padding_imgs_shape, axis=0) inputs['scale_factor'] = origin_scale_factor return inputs class PredictConfig(): """set config of preprocess, postprocess and visualize Args: model_dir (str): root path of model.yml """ def __init__(self, model_dir): # parsing Yaml config for Preprocess deploy_file = os.path.join(model_dir, 'infer_cfg.yml') with open(deploy_file) as f: yml_conf = yaml.safe_load(f) self.check_model(yml_conf) self.arch = yml_conf['arch'] self.preprocess_infos = yml_conf['Preprocess'] self.min_subgraph_size = yml_conf['min_subgraph_size'] self.labels = yml_conf['label_list'] self.mask = False self.use_dynamic_shape = yml_conf['use_dynamic_shape'] if 'mask' in yml_conf: self.mask = yml_conf['mask'] self.print_config() def check_model(self, yml_conf): """ Raises: ValueError: loaded model not in supported model type """ for support_model in SUPPORT_MODELS: if support_model in yml_conf['arch']: return True raise ValueError("Unsupported arch: {}, expect {}".format(yml_conf[ 'arch'], SUPPORT_MODELS)) def print_config(self): print('----------- Model Configuration -----------') print('%s: %s' % ('Model Arch', self.arch)) print('%s: ' % ('Transform Order')) for op_info in self.preprocess_infos: print('--%s: %s' % ('transform op', op_info['type'])) print('--------------------------------------------') def load_predictor(model_dir, run_mode='fluid', batch_size=1, use_gpu=False, min_subgraph_size=3, use_dynamic_shape=False, trt_min_shape=1, trt_max_shape=1280, trt_opt_shape=640, trt_calib_mode=False, cpu_threads=1, enable_mkldnn=False): """set AnalysisConfig, generate AnalysisPredictor Args: model_dir (str): root path of __model__ and __params__ use_gpu (bool): whether use gpu run_mode (str): mode of running(fluid/trt_fp32/trt_fp16/trt_int8) use_dynamic_shape (bool): use dynamic shape or not trt_min_shape (int): min shape for dynamic shape in trt trt_max_shape (int): max shape for dynamic shape in trt trt_opt_shape (int): opt shape for dynamic shape in trt trt_calib_mode (bool): If the model is produced by TRT offline quantitative calibration, trt_calib_mode need to set True Returns: predictor (PaddlePredictor): AnalysisPredictor Raises: ValueError: predict by TensorRT need use_gpu == True. """ if not use_gpu and not run_mode == 'fluid': raise ValueError( "Predict by TensorRT mode: {}, expect use_gpu==True, but use_gpu == {}" .format(run_mode, use_gpu)) config = Config( os.path.join(model_dir, 'model.pdmodel'), os.path.join(model_dir, 'model.pdiparams')) precision_map = { 'trt_int8': Config.Precision.Int8, 'trt_fp32': Config.Precision.Float32, 'trt_fp16': Config.Precision.Half } if use_gpu: # initial GPU memory(M), device ID config.enable_use_gpu(200, 0) # optimize graph and fuse op config.switch_ir_optim(True) else: config.disable_gpu() config.set_cpu_math_library_num_threads(cpu_threads) if enable_mkldnn: try: # cache 10 different shapes for mkldnn to avoid memory leak config.set_mkldnn_cache_capacity(10) config.enable_mkldnn() except Exception as e: print( "The current environment does not support `mkldnn`, so disable mkldnn." ) pass if run_mode in precision_map.keys(): config.enable_tensorrt_engine( workspace_size=1 << 10, max_batch_size=batch_size, min_subgraph_size=min_subgraph_size, precision_mode=precision_map[run_mode], use_static=False, use_calib_mode=trt_calib_mode) if use_dynamic_shape: min_input_shape = {'image': [1, 3, trt_min_shape, trt_min_shape]} max_input_shape = {'image': [1, 3, trt_max_shape, trt_max_shape]} opt_input_shape = {'image': [1, 3, trt_opt_shape, trt_opt_shape]} config.set_trt_dynamic_shape_info(min_input_shape, max_input_shape, opt_input_shape) print('trt set dynamic shape done!') # disable print log when predict config.disable_glog_info() # enable shared memory config.enable_memory_optim() # disable feed, fetch OP, needed by zero_copy_run config.switch_use_feed_fetch_ops(False) predictor = create_predictor(config) return predictor, config def get_test_images(infer_dir, infer_img): """ Get image path list in TEST mode """ assert infer_img is not None or infer_dir is not None, \ "--infer_img or --infer_dir should be set" assert infer_img is None or os.path.isfile(infer_img), \ "{} is not a file".format(infer_img) assert infer_dir is None or os.path.isdir(infer_dir), \ "{} is not a directory".format(infer_dir) # infer_img has a higher priority if infer_img and os.path.isfile(infer_img): return [infer_img] images = set() infer_dir = os.path.abspath(infer_dir) assert os.path.isdir(infer_dir), \ "infer_dir {} is not a directory".format(infer_dir) exts = ['jpg', 'jpeg', 'png', 'bmp'] exts += [ext.upper() for ext in exts] for ext in exts: images.update(glob.glob('{}/*.{}'.format(infer_dir, ext))) images = list(images) assert len(images) > 0, "no image found in {}".format(infer_dir) print("Found {} inference images in total.".format(len(images))) return images def visualize(image_list, results, labels, output_dir='output/', threshold=0.5): # visualize the predict result start_idx = 0 for idx, image_file in enumerate(image_list): im_bboxes_num = results['boxes_num'][idx] im_results = {} if 'boxes' in results: im_results['boxes'] = results['boxes'][start_idx:start_idx + im_bboxes_num, :] if 'masks' in results: im_results['masks'] = results['masks'][start_idx:start_idx + im_bboxes_num, :] if 'segm' in results: im_results['segm'] = results['segm'][start_idx:start_idx + im_bboxes_num, :] start_idx += im_bboxes_num im = visualize_box_mask( image_file, im_results, labels, threshold=threshold) img_name = os.path.split(image_file)[-1] if not os.path.exists(output_dir): os.makedirs(output_dir) out_path = os.path.join(output_dir, img_name) im.save(out_path, quality=95) print("save result to: " + out_path) def print_arguments(args): print('----------- Running Arguments -----------') for arg, value in sorted(vars(args).items()): print('%s: %s' % (arg, value)) print('------------------------------------------') def predict_image(detector, image_list, batch_size=1): batch_loop_cnt = math.ceil(float(len(image_list)) / batch_size) for i in range(batch_loop_cnt): start_index = i * batch_size end_index = min((i + 1) * batch_size, len(image_list)) batch_image_list = image_list[start_index:end_index] if FLAGS.run_benchmark: detector.predict( batch_image_list, FLAGS.threshold, warmup=10, repeats=10) cm, gm, gu = get_current_memory_mb() detector.cpu_mem += cm detector.gpu_mem += gm detector.gpu_util += gu print('Test iter {}'.format(i)) else: results = detector.predict(batch_image_list, FLAGS.threshold) visualize( batch_image_list, results, detector.pred_config.labels, output_dir=FLAGS.output_dir, threshold=FLAGS.threshold) def predict_video(detector, camera_id): if camera_id != -1: capture = cv2.VideoCapture(camera_id) video_name = 'output.mp4' else: capture = cv2.VideoCapture(FLAGS.video_file) video_name = os.path.split(FLAGS.video_file)[-1] fps = 30 width = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH)) height = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT)) # yapf: disable fourcc = cv2.VideoWriter_fourcc(*'mp4v') # yapf: enable if not os.path.exists(FLAGS.output_dir): os.makedirs(FLAGS.output_dir) out_path = os.path.join(FLAGS.output_dir, video_name) writer = cv2.VideoWriter(out_path, fourcc, fps, (width, height)) index = 1 while (1): ret, frame = capture.read() if not ret: break print('detect frame:%d' % (index)) index += 1 results = detector.predict(frame, FLAGS.threshold) im = visualize_box_mask( frame, results, detector.pred_config.labels, threshold=FLAGS.threshold) im = np.array(im) writer.write(im) if camera_id != -1: cv2.imshow('Mask Detection', im) if cv2.waitKey(1) & 0xFF == ord('q'): break writer.release() def main(): pred_config = PredictConfig(FLAGS.model_dir) detector = Detector( pred_config, FLAGS.model_dir, use_gpu=FLAGS.use_gpu, run_mode=FLAGS.run_mode, batch_size=FLAGS.batch_size, trt_min_shape=FLAGS.trt_min_shape, trt_max_shape=FLAGS.trt_max_shape, trt_opt_shape=FLAGS.trt_opt_shape, trt_calib_mode=FLAGS.trt_calib_mode, cpu_threads=FLAGS.cpu_threads, enable_mkldnn=FLAGS.enable_mkldnn) if pred_config.arch == 'SOLOv2': detector = DetectorSOLOv2( pred_config, FLAGS.model_dir, use_gpu=FLAGS.use_gpu, run_mode=FLAGS.run_mode, batch_size=FLAGS.batch_size, trt_min_shape=FLAGS.trt_min_shape, trt_max_shape=FLAGS.trt_max_shape, trt_opt_shape=FLAGS.trt_opt_shape, trt_calib_mode=FLAGS.trt_calib_mode, cpu_threads=FLAGS.cpu_threads, enable_mkldnn=FLAGS.enable_mkldnn) # predict from video file or camera video stream if FLAGS.video_file is not None or FLAGS.camera_id != -1: predict_video(detector, FLAGS.camera_id) else: # predict from image if FLAGS.image_dir is None and FLAGS.image_file is not None: assert FLAGS.batch_size == 1, "batch_size should be 1, when image_file is not None" img_list = get_test_images(FLAGS.image_dir, FLAGS.image_file) predict_image(detector, img_list, FLAGS.batch_size) if not FLAGS.run_benchmark: detector.det_times.info(average=True) else: mems = { 'cpu_rss_mb': detector.cpu_mem / len(img_list), 'gpu_rss_mb': detector.gpu_mem / len(img_list), 'gpu_util': detector.gpu_util * 100 / len(img_list) } perf_info = detector.det_times.report(average=True) model_dir = FLAGS.model_dir mode = FLAGS.run_mode model_info = { 'model_name': model_dir.strip('/').split('/')[-1], 'precision': mode.split('_')[-1] } data_info = { 'batch_size': FLAGS.batch_size, 'shape': "dynamic_shape", 'data_num': perf_info['img_num'] } det_log = PaddleInferBenchmark(detector.config, model_info, data_info, perf_info, mems) det_log('Det') if __name__ == '__main__': paddle.enable_static() parser = argsparser() FLAGS = parser.parse_args() print_arguments(FLAGS) main()