# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import os, sys # add python path of PadleDetection to sys.path parent_path = os.path.abspath(os.path.join(__file__, *(['..'] * 2))) if parent_path not in sys.path: sys.path.append(parent_path) # ignore numba warning import warnings warnings.filterwarnings('ignore') import glob import numpy as np from PIL import Image import paddle from ppdet.core.workspace import load_config, merge_config, create from ppdet.utils.check import check_gpu, check_version, check_config from ppdet.utils.cli import ArgsParser from ppdet.utils.checkpoint import load_weight from export_utils import dump_infer_config from paddle.jit import to_static import paddle.nn as nn from paddle.static import InputSpec import logging FORMAT = '%(asctime)s-%(levelname)s: %(message)s' logging.basicConfig(level=logging.INFO, format=FORMAT) logger = logging.getLogger(__name__) def parse_args(): parser = ArgsParser() parser.add_argument( "--output_dir", type=str, default="output_inference", help="Directory for storing the output model files.") args = parser.parse_args() return args def dygraph_to_static(model, save_dir, cfg): if not os.path.exists(save_dir): os.makedirs(save_dir) inputs_def = cfg['TestReader']['inputs_def'] image_shape = inputs_def.get('image_shape') if image_shape is None: image_shape = [3, None, None] # Save infer cfg dump_infer_config(cfg, os.path.join(save_dir, 'infer_cfg.yml'), image_shape) input_spec = [{ "image": InputSpec( shape=[None] + image_shape, name='image'), "im_shape": InputSpec( shape=[None, 2], name='im_shape'), "scale_factor": InputSpec( shape=[None, 2], name='scale_factor') }] export_model = to_static(model, input_spec=input_spec) # save Model paddle.jit.save(export_model, os.path.join(save_dir, 'model')) def run(FLAGS, cfg): # Model main_arch = cfg.architecture model = create(cfg.architecture) cfg_name = os.path.basename(FLAGS.config).split('.')[0] save_dir = os.path.join(FLAGS.output_dir, cfg_name) # Init Model load_weight(model, cfg.weights) # export config and model dygraph_to_static(model, save_dir, cfg) logger.info('Export model to {}'.format(save_dir)) def main(): paddle.set_device("cpu") FLAGS = parse_args() cfg = load_config(FLAGS.config) merge_config(FLAGS.opt) check_config(cfg) check_gpu(cfg.use_gpu) check_version() run(FLAGS, cfg) if __name__ == '__main__': main()