# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import math import logging import paddle import paddle.nn as nn import paddle.optimizer as optimizer import paddle.fluid.regularizer as regularizer from paddle import cos from ppdet.core.workspace import register, serializable __all__ = ['LearningRate', 'OptimizerBuilder'] logger = logging.getLogger(__name__) @serializable class PiecewiseDecay(object): """ Multi step learning rate decay Args: gamma (float | list): decay factor milestones (list): steps at which to decay learning rate """ def __init__(self, gamma=[0.1, 0.01], milestones=[8, 11]): super(PiecewiseDecay, self).__init__() if type(gamma) is not list: self.gamma = [] for i in range(len(milestones)): self.gamma.append(gamma / 10**i) else: self.gamma = gamma self.milestones = milestones def __call__(self, base_lr=None, boundary=None, value=None, step_per_epoch=None): if boundary is not None: boundary.extend([int(step_per_epoch) * i for i in self.milestones]) if value is not None: for i in self.gamma: value.append(base_lr * i) return optimizer.lr.PiecewiseDecay(boundary, value) @serializable class LinearWarmup(object): """ Warm up learning rate linearly Args: steps (int): warm up steps start_factor (float): initial learning rate factor """ def __init__(self, steps=500, start_factor=1. / 3): super(LinearWarmup, self).__init__() self.steps = steps self.start_factor = start_factor def __call__(self, base_lr): boundary = [] value = [] for i in range(self.steps + 1): alpha = i / self.steps factor = self.start_factor * (1 - alpha) + alpha lr = base_lr * factor value.append(lr) if i > 0: boundary.append(i) return boundary, value @register class LearningRate(object): """ Learning Rate configuration Args: base_lr (float): base learning rate schedulers (list): learning rate schedulers """ __category__ = 'optim' def __init__(self, base_lr=0.01, schedulers=[PiecewiseDecay(), LinearWarmup()]): super(LearningRate, self).__init__() self.base_lr = base_lr self.schedulers = schedulers def __call__(self, step_per_epoch): # TODO: split warmup & decay # warmup boundary, value = self.schedulers[1](self.base_lr) # decay decay_lr = self.schedulers[0](self.base_lr, boundary, value, step_per_epoch) return decay_lr @register class OptimizerBuilder(): """ Build optimizer handles Args: regularizer (object): an `Regularizer` instance optimizer (object): an `Optimizer` instance """ __category__ = 'optim' def __init__(self, clip_grad_by_norm=None, regularizer={'type': 'L2', 'factor': .0001}, optimizer={'type': 'Momentum', 'momentum': .9}): self.clip_grad_by_norm = clip_grad_by_norm self.regularizer = regularizer self.optimizer = optimizer def __call__(self, learning_rate, params=None): if self.clip_grad_by_norm is not None: grad_clip = nn.GradientClipByGlobalNorm( clip_norm=self.clip_grad_by_norm) else: grad_clip = None if self.regularizer: reg_type = self.regularizer['type'] + 'Decay' reg_factor = self.regularizer['factor'] regularization = getattr(regularizer, reg_type)(reg_factor) else: regularization = None optim_args = self.optimizer.copy() optim_type = optim_args['type'] del optim_args['type'] op = getattr(optimizer, optim_type) return op(learning_rate=learning_rate, parameters=params, weight_decay=regularization, grad_clip=grad_clip, **optim_args)