// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/inference/analysis/analyzer.h" #include #include // use glog instead of PADDLE_ENFORCE to avoid importing other paddle header files. #include #include "paddle/fluid/framework/ir/pass.h" #include "paddle/fluid/inference/analysis/ut_helper.h" #include "paddle/fluid/inference/api/paddle_inference_api.h" #include "paddle/fluid/inference/api/paddle_inference_pass.h" #include "paddle/fluid/inference/api/timer.h" DEFINE_string(infer_model, "", "Directory of the inference model."); DEFINE_string(infer_data, "", "Path of the dataset."); DEFINE_int32(batch_size, 1, "batch size."); DEFINE_int32(repeat, 1, "How many times to repeat run."); namespace paddle { template std::string to_string(const std::vector &vec) { std::stringstream ss; for (const auto &c : vec) { ss << c << " "; } return ss.str(); } void PrintTime(const double latency, const int bs, const int repeat) { LOG(INFO) << "===========profile result==========="; LOG(INFO) << "batch_size: " << bs << ", repeat: " << repeat << ", avg latency: " << latency / repeat << "ms"; LOG(INFO) << "====================================="; } void Main(int batch_size) { // Three sequence inputs. std::vector input_slots(1); // one batch starts // data -- int64_t data0[] = {0, 1, 2}; for (auto &input : input_slots) { input.data.Reset(data0, sizeof(data0)); input.shape = std::vector({3, 1}); // dtype -- input.dtype = PaddleDType::INT64; // LoD -- input.lod = std::vector>({{0, 3}}); } // shape -- // Create Predictor -- AnalysisConfig config; config.model_dir = FLAGS_infer_model; config.use_gpu = false; config.enable_ir_optim = true; config.ir_passes.push_back("fc_lstm_fuse_pass"); auto predictor = CreatePaddlePredictor( config); inference::Timer timer; double sum = 0; std::vector output_slots; for (int i = 0; i < FLAGS_repeat; i++) { timer.tic(); CHECK(predictor->Run(input_slots, &output_slots)); sum += timer.toc(); } PrintTime(sum, batch_size, FLAGS_repeat); // Get output LOG(INFO) << "get outputs " << output_slots.size(); for (auto &output : output_slots) { LOG(INFO) << "output.shape: " << to_string(output.shape); // no lod ? CHECK_EQ(output.lod.size(), 0UL); LOG(INFO) << "output.dtype: " << output.dtype; std::stringstream ss; for (int i = 0; i < 5; i++) { ss << static_cast(output.data.data())[i] << " "; } LOG(INFO) << "output.data summary: " << ss.str(); // one batch ends } } TEST(text_classification, basic) { Main(FLAGS_batch_size); } } // namespace paddle