# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import paddle import numpy as np import math import cv2 from ppdet.core.workspace import register, create from .meta_arch import BaseArch from ..keypoint_utils import transform_preds from .. import layers as L from paddle.nn import functional as F __all__ = ['TopDownHRNet', 'TinyPose3DHRNet', 'TinyPose3DHRHeatmapNet'] @register class TopDownHRNet(BaseArch): __category__ = 'architecture' __inject__ = ['loss'] def __init__(self, width, num_joints, backbone='HRNet', loss='KeyPointMSELoss', post_process='HRNetPostProcess', flip_perm=None, flip=True, shift_heatmap=True, use_dark=True): """ HRNet network, see https://arxiv.org/abs/1902.09212 Args: backbone (nn.Layer): backbone instance post_process (object): `HRNetPostProcess` instance flip_perm (list): The left-right joints exchange order list use_dark(bool): Whether to use DARK in post processing """ super(TopDownHRNet, self).__init__() self.backbone = backbone self.post_process = HRNetPostProcess(use_dark) self.loss = loss self.flip_perm = flip_perm self.flip = flip self.final_conv = L.Conv2d(width, num_joints, 1, 1, 0, bias=True) self.shift_heatmap = shift_heatmap self.deploy = False @classmethod def from_config(cls, cfg, *args, **kwargs): # backbone backbone = create(cfg['backbone']) return {'backbone': backbone, } def _forward(self): feats = self.backbone(self.inputs) hrnet_outputs = self.final_conv(feats[0]) if self.training: return self.loss(hrnet_outputs, self.inputs) elif self.deploy: outshape = hrnet_outputs.shape max_idx = paddle.argmax( hrnet_outputs.reshape( (outshape[0], outshape[1], outshape[2] * outshape[3])), axis=-1) return hrnet_outputs, max_idx else: if self.flip: self.inputs['image'] = self.inputs['image'].flip([3]) feats = self.backbone(self.inputs) output_flipped = self.final_conv(feats[0]) output_flipped = self.flip_back(output_flipped.numpy(), self.flip_perm) output_flipped = paddle.to_tensor(output_flipped.copy()) if self.shift_heatmap: output_flipped[:, :, :, 1:] = output_flipped.clone( )[:, :, :, 0:-1] hrnet_outputs = (hrnet_outputs + output_flipped) * 0.5 imshape = (self.inputs['im_shape'].numpy() )[:, ::-1] if 'im_shape' in self.inputs else None center = self.inputs['center'].numpy( ) if 'center' in self.inputs else np.round(imshape / 2.) scale = self.inputs['scale'].numpy( ) if 'scale' in self.inputs else imshape / 200. outputs = self.post_process(hrnet_outputs, center, scale) return outputs def get_loss(self): return self._forward() def get_pred(self): res_lst = self._forward() outputs = {'keypoint': res_lst} return outputs def flip_back(self, output_flipped, matched_parts): assert output_flipped.ndim == 4,\ 'output_flipped should be [batch_size, num_joints, height, width]' output_flipped = output_flipped[:, :, :, ::-1] for pair in matched_parts: tmp = output_flipped[:, pair[0], :, :].copy() output_flipped[:, pair[0], :, :] = output_flipped[:, pair[1], :, :] output_flipped[:, pair[1], :, :] = tmp return output_flipped class HRNetPostProcess(object): def __init__(self, use_dark=True): self.use_dark = use_dark def get_max_preds(self, heatmaps): '''get predictions from score maps Args: heatmaps: numpy.ndarray([batch_size, num_joints, height, width]) Returns: preds: numpy.ndarray([batch_size, num_joints, 2]), keypoints coords maxvals: numpy.ndarray([batch_size, num_joints, 2]), the maximum confidence of the keypoints ''' assert isinstance(heatmaps, np.ndarray), 'heatmaps should be numpy.ndarray' assert heatmaps.ndim == 4, 'batch_images should be 4-ndim' batch_size = heatmaps.shape[0] num_joints = heatmaps.shape[1] width = heatmaps.shape[3] heatmaps_reshaped = heatmaps.reshape((batch_size, num_joints, -1)) idx = np.argmax(heatmaps_reshaped, 2) maxvals = np.amax(heatmaps_reshaped, 2) maxvals = maxvals.reshape((batch_size, num_joints, 1)) idx = idx.reshape((batch_size, num_joints, 1)) preds = np.tile(idx, (1, 1, 2)).astype(np.float32) preds[:, :, 0] = (preds[:, :, 0]) % width preds[:, :, 1] = np.floor((preds[:, :, 1]) / width) pred_mask = np.tile(np.greater(maxvals, 0.0), (1, 1, 2)) pred_mask = pred_mask.astype(np.float32) preds *= pred_mask return preds, maxvals def gaussian_blur(self, heatmap, kernel): border = (kernel - 1) // 2 batch_size = heatmap.shape[0] num_joints = heatmap.shape[1] height = heatmap.shape[2] width = heatmap.shape[3] for i in range(batch_size): for j in range(num_joints): origin_max = np.max(heatmap[i, j]) dr = np.zeros((height + 2 * border, width + 2 * border)) dr[border:-border, border:-border] = heatmap[i, j].copy() dr = cv2.GaussianBlur(dr, (kernel, kernel), 0) heatmap[i, j] = dr[border:-border, border:-border].copy() heatmap[i, j] *= origin_max / np.max(heatmap[i, j]) return heatmap def dark_parse(self, hm, coord): heatmap_height = hm.shape[0] heatmap_width = hm.shape[1] px = int(coord[0]) py = int(coord[1]) if 1 < px < heatmap_width - 2 and 1 < py < heatmap_height - 2: dx = 0.5 * (hm[py][px + 1] - hm[py][px - 1]) dy = 0.5 * (hm[py + 1][px] - hm[py - 1][px]) dxx = 0.25 * (hm[py][px + 2] - 2 * hm[py][px] + hm[py][px - 2]) dxy = 0.25 * (hm[py+1][px+1] - hm[py-1][px+1] - hm[py+1][px-1] \ + hm[py-1][px-1]) dyy = 0.25 * ( hm[py + 2 * 1][px] - 2 * hm[py][px] + hm[py - 2 * 1][px]) derivative = np.matrix([[dx], [dy]]) hessian = np.matrix([[dxx, dxy], [dxy, dyy]]) if dxx * dyy - dxy**2 != 0: hessianinv = hessian.I offset = -hessianinv * derivative offset = np.squeeze(np.array(offset.T), axis=0) coord += offset return coord def dark_postprocess(self, hm, coords, kernelsize): '''DARK postpocessing, Zhang et al. Distribution-Aware Coordinate Representation for Human Pose Estimation (CVPR 2020). ''' hm = self.gaussian_blur(hm, kernelsize) hm = np.maximum(hm, 1e-10) hm = np.log(hm) for n in range(coords.shape[0]): for p in range(coords.shape[1]): coords[n, p] = self.dark_parse(hm[n][p], coords[n][p]) return coords def get_final_preds(self, heatmaps, center, scale, kernelsize=3): """the highest heatvalue location with a quarter offset in the direction from the highest response to the second highest response. Args: heatmaps (numpy.ndarray): The predicted heatmaps center (numpy.ndarray): The boxes center scale (numpy.ndarray): The scale factor Returns: preds: numpy.ndarray([batch_size, num_joints, 2]), keypoints coords maxvals: numpy.ndarray([batch_size, num_joints, 1]), the maximum confidence of the keypoints """ coords, maxvals = self.get_max_preds(heatmaps) heatmap_height = heatmaps.shape[2] heatmap_width = heatmaps.shape[3] if self.use_dark: coords = self.dark_postprocess(heatmaps, coords, kernelsize) else: for n in range(coords.shape[0]): for p in range(coords.shape[1]): hm = heatmaps[n][p] px = int(math.floor(coords[n][p][0] + 0.5)) py = int(math.floor(coords[n][p][1] + 0.5)) if 1 < px < heatmap_width - 1 and 1 < py < heatmap_height - 1: diff = np.array([ hm[py][px + 1] - hm[py][px - 1], hm[py + 1][px] - hm[py - 1][px] ]) coords[n][p] += np.sign(diff) * .25 preds = coords.copy() # Transform back for i in range(coords.shape[0]): preds[i] = transform_preds(coords[i], center[i], scale[i], [heatmap_width, heatmap_height]) return preds, maxvals def __call__(self, output, center, scale): preds, maxvals = self.get_final_preds(output.numpy(), center, scale) outputs = [[ np.concatenate( (preds, maxvals), axis=-1), np.mean( maxvals, axis=1) ]] return outputs class TinyPose3DPostProcess(object): def __init__(self): pass def __call__(self, output, center, scale): """ Args: output (numpy.ndarray): numpy.ndarray([batch_size, num_joints, 3]), keypoints coords scale (numpy.ndarray): The scale factor Returns: preds: numpy.ndarray([batch_size, num_joints, 3]), keypoints coords """ preds = output.numpy().copy() # Transform back for i in range(output.shape[0]): # batch_size preds[i][:, 0] = preds[i][:, 0] * scale[i][0] preds[i][:, 1] = preds[i][:, 1] * scale[i][1] return preds def soft_argmax(heatmaps, joint_num): dims = heatmaps.shape depth_dim = (int)(dims[1] / joint_num) heatmaps = heatmaps.reshape((-1, joint_num, depth_dim * dims[2] * dims[3])) heatmaps = F.softmax(heatmaps, 2) heatmaps = heatmaps.reshape((-1, joint_num, depth_dim, dims[2], dims[3])) accu_x = heatmaps.sum(axis=(2, 3)) accu_y = heatmaps.sum(axis=(2, 4)) accu_z = heatmaps.sum(axis=(3, 4)) accu_x = accu_x * paddle.arange(1, 33) accu_y = accu_y * paddle.arange(1, 33) accu_z = accu_z * paddle.arange(1, 33) accu_x = accu_x.sum(axis=2, keepdim=True) - 1 accu_y = accu_y.sum(axis=2, keepdim=True) - 1 accu_z = accu_z.sum(axis=2, keepdim=True) - 1 coord_out = paddle.concat( (accu_x, accu_y, accu_z), axis=2) # [batch_size, joint_num, 3] return coord_out @register class TinyPose3DHRHeatmapNet(BaseArch): __category__ = 'architecture' __inject__ = ['loss'] def __init__( self, width, # 40, backbone输出的channel数目 num_joints, backbone='HRNet', loss='KeyPointRegressionMSELoss', post_process=TinyPose3DPostProcess): """ Args: backbone (nn.Layer): backbone instance post_process (object): post process instance """ super(TinyPose3DHRHeatmapNet, self).__init__() self.backbone = backbone self.post_process = TinyPose3DPostProcess() self.loss = loss self.deploy = False self.num_joints = num_joints self.final_conv = L.Conv2d(width, num_joints, 1, 1, 0, bias=True) # for heatmap output self.final_conv_new = L.Conv2d( width, num_joints * 32, 1, 1, 0, bias=True) @classmethod def from_config(cls, cfg, *args, **kwargs): # backbone backbone = create(cfg['backbone']) return {'backbone': backbone, } def _forward(self): feats = self.backbone(self.inputs) # feats:[[batch_size, 40, 32, 24]] hrnet_outputs = self.final_conv_new(feats[0]) res = soft_argmax(hrnet_outputs, self.num_joints) if self.training: return self.loss(res, self.inputs) else: # export model need return res def get_loss(self): return self._forward() def get_pred(self): res_lst = self._forward() outputs = {'keypoint': res_lst} return outputs def flip_back(self, output_flipped, matched_parts): assert output_flipped.ndim == 4,\ 'output_flipped should be [batch_size, num_joints, height, width]' output_flipped = output_flipped[:, :, :, ::-1] for pair in matched_parts: tmp = output_flipped[:, pair[0], :, :].copy() output_flipped[:, pair[0], :, :] = output_flipped[:, pair[1], :, :] output_flipped[:, pair[1], :, :] = tmp return output_flipped @register class TinyPose3DHRNet(BaseArch): __category__ = 'architecture' __inject__ = ['loss'] def __init__(self, width, num_joints, backbone='HRNet', loss='KeyPointRegressionMSELoss', post_process=TinyPose3DPostProcess): """ Args: backbone (nn.Layer): backbone instance post_process (object): post process instance """ super(TinyPose3DHRNet, self).__init__() self.backbone = backbone self.post_process = TinyPose3DPostProcess() self.loss = loss self.deploy = False self.num_joints = num_joints self.final_conv = L.Conv2d(width, num_joints, 1, 1, 0, bias=True) self.final_conv_new = L.Conv2d( width, num_joints * 32, 1, 1, 0, bias=True) self.flatten = paddle.nn.Flatten(start_axis=2, stop_axis=3) self.fc1 = paddle.nn.Linear(768, 256) self.act1 = paddle.nn.ReLU() self.fc2 = paddle.nn.Linear(256, 64) self.act2 = paddle.nn.ReLU() self.fc3 = paddle.nn.Linear(64, 3) # for human3.6M self.fc1_1 = paddle.nn.Linear(3136, 1024) self.fc2_1 = paddle.nn.Linear(1024, 256) self.fc3_1 = paddle.nn.Linear(256, 3) @classmethod def from_config(cls, cfg, *args, **kwargs): # backbone backbone = create(cfg['backbone']) return {'backbone': backbone, } def _forward(self): feats = self.backbone(self.inputs) # feats:[[batch_size, 40, 32, 24]] hrnet_outputs = self.final_conv(feats[0]) flatten_res = self.flatten( hrnet_outputs) # [batch_size, 24, (height/4)*(width/4)] res = self.fc1(flatten_res) res = self.act1(res) res = self.fc2(res) res = self.act2(res) res = self.fc3(res) # [batch_size, 24, 3] if self.training: return self.loss(res, self.inputs) else: # export model need return res def get_loss(self): return self._forward() def get_pred(self): res_lst = self._forward() outputs = {'keypoint': res_lst} return outputs def flip_back(self, output_flipped, matched_parts): assert output_flipped.ndim == 4,\ 'output_flipped should be [batch_size, num_joints, height, width]' output_flipped = output_flipped[:, :, :, ::-1] for pair in matched_parts: tmp = output_flipped[:, pair[0], :, :].copy() output_flipped[:, pair[0], :, :] = output_flipped[:, pair[1], :, :] output_flipped[:, pair[1], :, :] = tmp return output_flipped