import numpy as np from numba import jit @jit def bbox2delta(bboxes1, bboxes2, weights): ex_w = bboxes1[:, 2] - bboxes1[:, 0] + 1 ex_h = bboxes1[:, 3] - bboxes1[:, 1] + 1 ex_ctr_x = bboxes1[:, 0] + 0.5 * ex_w ex_ctr_y = bboxes1[:, 1] + 0.5 * ex_h gt_w = bboxes2[:, 2] - bboxes2[:, 0] + 1 gt_h = bboxes2[:, 3] - bboxes2[:, 1] + 1 gt_ctr_x = bboxes2[:, 0] + 0.5 * gt_w gt_ctr_y = bboxes2[:, 1] + 0.5 * gt_h dx = (gt_ctr_x - ex_ctr_x) / ex_w / weights[0] dy = (gt_ctr_y - ex_ctr_y) / ex_h / weights[1] dw = (np.log(gt_w / ex_w)) / weights[2] dh = (np.log(gt_h / ex_h)) / weights[3] deltas = np.vstack([dx, dy, dw, dh]).transpose() return deltas @jit def delta2bbox(deltas, boxes, weights, bbox_clip=4.13): if boxes.shape[0] == 0: return np.zeros((0, deltas.shape[1]), dtype=deltas.dtype) boxes = boxes.astype(deltas.dtype, copy=False) widths = boxes[:, 2] - boxes[:, 0] + 1.0 heights = boxes[:, 3] - boxes[:, 1] + 1.0 ctr_x = boxes[:, 0] + 0.5 * widths ctr_y = boxes[:, 1] + 0.5 * heights wx, wy, ww, wh = weights dx = deltas[:, 0::4] * wx dy = deltas[:, 1::4] * wy dw = deltas[:, 2::4] * ww dh = deltas[:, 3::4] * wh # Prevent sending too large values into np.exp() dw = np.minimum(dw, bbox_clip) dh = np.minimum(dh, bbox_clip) pred_ctr_x = dx * widths[:, np.newaxis] + ctr_x[:, np.newaxis] pred_ctr_y = dy * heights[:, np.newaxis] + ctr_y[:, np.newaxis] pred_w = np.exp(dw) * widths[:, np.newaxis] pred_h = np.exp(dh) * heights[:, np.newaxis] pred_boxes = np.zeros(deltas.shape, dtype=deltas.dtype) # x1 pred_boxes[:, 0::4] = pred_ctr_x - 0.5 * pred_w # y1 pred_boxes[:, 1::4] = pred_ctr_y - 0.5 * pred_h # x2 (note: "- 1" is correct; don't be fooled by the asymmetry) pred_boxes[:, 2::4] = pred_ctr_x + 0.5 * pred_w - 1 # y2 (note: "- 1" is correct; don't be fooled by the asymmetry) pred_boxes[:, 3::4] = pred_ctr_y + 0.5 * pred_h - 1 return pred_boxes @jit def expand_bbox(bboxes, scale): w_half = (bboxes[:, 2] - bboxes[:, 0]) * .5 h_half = (bboxes[:, 3] - bboxes[:, 1]) * .5 x_c = (bboxes[:, 2] + bboxes[:, 0]) * .5 y_c = (bboxes[:, 3] + bboxes[:, 1]) * .5 w_half *= scale h_half *= scale bboxes_exp = np.zeros(bboxes.shape, dtype=np.float32) bboxes_exp[:, 0] = x_c - w_half bboxes_exp[:, 2] = x_c + w_half bboxes_exp[:, 1] = y_c - h_half bboxes_exp[:, 3] = y_c + h_half return bboxes_exp @jit def clip_bbox(boxes, im_shape): assert boxes.shape[1] % 4 == 0, \ 'boxes.shape[1] is {:d}, but must be divisible by 4.'.format( boxes.shape[1] ) # x1 >= 0 boxes[:, 0::4] = np.maximum(np.minimum(boxes[:, 0::4], im_shape[1] - 1), 0) # y1 >= 0 boxes[:, 1::4] = np.maximum(np.minimum(boxes[:, 1::4], im_shape[0] - 1), 0) # x2 < im_shape[1] boxes[:, 2::4] = np.maximum(np.minimum(boxes[:, 2::4], im_shape[1] - 1), 0) # y2 < im_shape[0] boxes[:, 3::4] = np.maximum(np.minimum(boxes[:, 3::4], im_shape[0] - 1), 0) return boxes @jit def bbox_overlaps(bboxes1, bboxes2): w1 = np.maximum(bboxes1[:, 2] - bboxes1[:, 0] + 1, 0) h1 = np.maximum(bboxes1[:, 3] - bboxes1[:, 1] + 1, 0) w2 = np.maximum(bboxes2[:, 2] - bboxes2[:, 0] + 1, 0) h2 = np.maximum(bboxes2[:, 3] - bboxes2[:, 1] + 1, 0) area1 = w1 * h1 area2 = w2 * h2 boxes1_x1, boxes1_y1, boxes1_x2, boxes1_y2 = np.split(bboxes1, 4, axis=1) boxes2_x1, boxes2_y1, boxes2_x2, boxes2_y2 = np.split(bboxes2, 4, axis=1) all_pairs_min_ymax = np.minimum(boxes1_y2, np.transpose(boxes2_y2)) all_pairs_max_ymin = np.maximum(boxes1_y1, np.transpose(boxes2_y1)) inter_h = np.maximum(all_pairs_min_ymax - all_pairs_max_ymin + 1, 0.) all_pairs_min_xmax = np.minimum(boxes1_x2, np.transpose(boxes2_x2)) all_pairs_max_xmin = np.maximum(boxes1_x1, np.transpose(boxes2_x1)) inter_w = np.maximum(all_pairs_min_xmax - all_pairs_max_xmin + 1, 0.) inter_area = inter_w * inter_h union_area = np.expand_dims(area1, 1) + np.expand_dims(area2, 0) overlaps = inter_area / (union_area - inter_area) return overlaps @jit def nms(dets, thresh): if dets.shape[0] == 0: return [] scores = dets[:, 0] x1 = dets[:, 1] y1 = dets[:, 2] x2 = dets[:, 3] y2 = dets[:, 4] areas = (x2 - x1 + 1) * (y2 - y1 + 1) order = scores.argsort()[::-1] ndets = dets.shape[0] suppressed = np.zeros((ndets), dtype=np.int) for _i in range(ndets): i = order[_i] if suppressed[i] == 1: continue ix1 = x1[i] iy1 = y1[i] ix2 = x2[i] iy2 = y2[i] iarea = areas[i] for _j in range(_i + 1, ndets): j = order[_j] if suppressed[j] == 1: continue xx1 = max(ix1, x1[j]) yy1 = max(iy1, y1[j]) xx2 = min(ix2, x2[j]) yy2 = min(iy2, y2[j]) w = max(0.0, xx2 - xx1 + 1) h = max(0.0, yy2 - yy1 + 1) inter = w * h ovr = inter / (iarea + areas[j] - inter) if ovr >= thresh: suppressed[j] = 1 return np.where(suppressed == 0)[0] def nms_with_decode(bboxes, bbox_probs, bbox_deltas, im_info, keep_top_k=100, score_thresh=0.05, nms_thresh=0.5, class_nums=81, bbox_reg_weights=[0.1, 0.1, 0.2, 0.2]): bboxes_num = [0, bboxes.shape[0]] bboxes_v = np.array(bboxes) bbox_probs_v = np.array(bbox_probs) bbox_deltas_v = np.array(bbox_deltas) variance_v = np.array(bbox_reg_weights) im_results = [[] for _ in range(len(bboxes_num) - 1)] new_bboxes_num = [0] for i in range(len(bboxes_num) - 1): start = bboxes_num[i] end = bboxes_num[i + 1] if start == end: continue bbox_deltas_n = bbox_deltas_v[start:end, :] # box delta rois_n = bboxes_v[start:end, :] # box rois_n = rois_n / im_info[i][2] # scale rois_n = delta2bbox(bbox_deltas_n, rois_n, variance_v) rois_n = clip_bbox(rois_n, np.round(im_info[i][:2] / im_info[i][2])) cls_boxes = [[] for _ in range(class_nums)] scores_n = bbox_probs_v[start:end, :] for j in range(1, class_nums): inds = np.where(scores_n[:, j] > score_thresh)[0] scores_j = scores_n[inds, j] rois_j = rois_n[inds, j * 4:(j + 1) * 4] dets_j = np.hstack((scores_j[:, np.newaxis], rois_j)).astype( np.float32, copy=False) keep = nms(dets_j, nms_thresh) nms_dets = dets_j[keep, :] #add labels label = np.array([j for _ in range(len(keep))]) nms_dets = np.hstack((label[:, np.newaxis], nms_dets)).astype( np.float32, copy=False) cls_boxes[j] = nms_dets # Limit to max_per_image detections **over all classes** image_scores = np.hstack( [cls_boxes[j][:, 1] for j in range(1, class_nums)]) if len(image_scores) > keep_top_k: image_thresh = np.sort(image_scores)[-keep_top_k] for j in range(1, class_nums): keep = np.where(cls_boxes[j][:, 1] >= image_thresh)[0] cls_boxes[j] = cls_boxes[j][keep, :] im_results_n = np.vstack([cls_boxes[j] for j in range(1, class_nums)]) im_results[i] = im_results_n new_bboxes_num.append(len(im_results_n) + new_bboxes_num[-1]) labels = im_results_n[:, 0] scores = im_results_n[:, 1] boxes = im_results_n[:, 2:] im_results = np.vstack([im_results[k] for k in range(len(bboxes_num) - 1)]) new_bboxes_num = np.array(new_bboxes_num) return new_bboxes_num, im_results @jit def compute_bbox_targets(bboxes1, bboxes2, labels, bbox_reg_weights): assert bboxes1.shape[0] == bboxes2.shape[0] assert bboxes1.shape[1] == 4 assert bboxes2.shape[1] == 4 targets = np.zeros(bboxes1.shape) bbox_reg_weights = np.asarray(bbox_reg_weights) targets = bbox2delta( bboxes1=bboxes1, bboxes2=bboxes2, weights=bbox_reg_weights) return np.hstack([labels[:, np.newaxis], targets]).astype( np.float32, copy=False) #@jit def expand_bbox_targets(bbox_targets_input, class_nums=81, is_cls_agnostic=False): class_labels = bbox_targets_input[:, 0] fg_inds = np.where(class_labels > 0)[0] if is_cls_agnostic: class_nums = 2 bbox_targets = np.zeros((class_labels.shape[0], 4 * class_nums)) bbox_inside_weights = np.zeros(bbox_targets.shape) for ind in fg_inds: class_label = int(class_labels[ind]) if not is_cls_agnostic else 1 start_ind = class_label * 4 end_ind = class_label * 4 + 4 bbox_targets[ind, start_ind:end_ind] = bbox_targets_input[ind, 1:] bbox_inside_weights[ind, start_ind:end_ind] = (1.0, 1.0, 1.0, 1.0) return bbox_targets, bbox_inside_weights