# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import paddle from ppdet.core.workspace import register, create from .meta_arch import BaseArch __all__ = ['FCOS'] @register class FCOS(BaseArch): __category__ = 'architecture' __inject__ = ['fcos_post_process'] def __init__(self, backbone, neck, fcos_head='FCOSHead', fcos_post_process='FCOSPostProcess'): super(FCOS, self).__init__() self.backbone = backbone self.neck = neck self.fcos_head = fcos_head self.fcos_post_process = fcos_post_process @classmethod def from_config(cls, cfg, *args, **kwargs): backbone = create(cfg['backbone']) kwargs = {'input_shape': backbone.out_shape} neck = create(cfg['neck'], **kwargs) kwargs = {'input_shape': neck.out_shape} fcos_head = create(cfg['fcos_head'], **kwargs) return { 'backbone': backbone, 'neck': neck, "fcos_head": fcos_head, } def _forward(self): body_feats = self.backbone(self.inputs) fpn_feats = self.neck(body_feats) fcos_head_outs = self.fcos_head(fpn_feats, self.training) if not self.training: scale_factor = self.inputs['scale_factor'] bboxes = self.fcos_post_process(fcos_head_outs, scale_factor) return bboxes else: return fcos_head_outs def get_loss(self, ): loss = {} tag_labels, tag_bboxes, tag_centerness = [], [], [] for i in range(len(self.fcos_head.fpn_stride)): # reg_target, labels, scores, centerness k_lbl = 'labels{}'.format(i) if k_lbl in self.inputs: tag_labels.append(self.inputs[k_lbl]) k_box = 'reg_target{}'.format(i) if k_box in self.inputs: tag_bboxes.append(self.inputs[k_box]) k_ctn = 'centerness{}'.format(i) if k_ctn in self.inputs: tag_centerness.append(self.inputs[k_ctn]) fcos_head_outs = self._forward() loss_fcos = self.fcos_head.get_loss(fcos_head_outs, tag_labels, tag_bboxes, tag_centerness) loss.update(loss_fcos) total_loss = paddle.add_n(list(loss.values())) loss.update({'loss': total_loss}) return loss def get_pred(self): bboxes, bbox_num = self._forward() label = bboxes[:, 0] score = bboxes[:, 1] bbox = bboxes[:, 2:] output = { 'bbox': bbox, 'score': score, 'label': label, 'bbox_num': bbox_num } return output