# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import sys # add python path of PadleDetection to sys.path parent_path = os.path.abspath(os.path.join(__file__, *(['..'] * 2))) if parent_path not in sys.path: sys.path.append(parent_path) import logging FORMAT = '%(asctime)s-%(levelname)s: %(message)s' logging.basicConfig(level=logging.INFO, format=FORMAT) logger = logging.getLogger(__name__) import time import numpy as np import random import datetime import six from collections import deque from paddle.fluid import profiler from paddle import fluid from paddle.fluid.layers.learning_rate_scheduler import _decay_step_counter from paddle.fluid.optimizer import ExponentialMovingAverage from paddle.fluid.incubate.fleet.collective import fleet, DistributedStrategy # new line 1 from paddle.fluid.incubate.fleet.base import role_maker # new line 2 try: from ppdet.experimental import mixed_precision_context from ppdet.core.workspace import load_config, merge_config, create from ppdet.data.reader import create_reader from ppdet.utils import dist_utils from ppdet.utils.eval_utils import parse_fetches, eval_run, eval_results from ppdet.utils.stats import TrainingStats from ppdet.utils.cli import ArgsParser from ppdet.utils.check import check_gpu, check_version, check_config, enable_static_mode import ppdet.utils.checkpoint as checkpoint except ImportError as e: if sys.argv[0].find('static') >= 0: logger.error("Importing ppdet failed when running static model " "with error: {}\n" "please try:\n" "\t1. run static model under PaddleDetection/static " "directory\n" "\t2. run 'pip uninstall ppdet' to uninstall ppdet " "dynamic version firstly.".format(e)) sys.exit(-1) else: raise e def main(): role = role_maker.PaddleCloudRoleMaker(is_collective=True) # new line 3 fleet.init(role) # new line 4 env = os.environ num_trainers = int(env.get('PADDLE_TRAINERS_NUM', 0)) assert num_trainers != 0, "multi-machine training process must be started using distributed.launch..." trainer_id = int(env.get("PADDLE_TRAINER_ID", 0)) # set different seeds for different trainers random.seed(trainer_id) np.random.seed(trainer_id) if FLAGS.enable_ce: random.seed(0) np.random.seed(0) cfg = load_config(FLAGS.config) merge_config(FLAGS.opt) check_config(cfg) # check if set use_gpu=True in paddlepaddle cpu version check_gpu(cfg.use_gpu) # check if paddlepaddle version is satisfied check_version() save_only = getattr(cfg, 'save_prediction_only', False) if save_only: raise NotImplementedError('The config file only support prediction,' ' training stage is not implemented now') main_arch = cfg.architecture assert cfg.use_gpu == True, "GPU must be supported for multi-machine training..." devices_num = fluid.core.get_cuda_device_count() if 'FLAGS_selected_gpus' in env: device_id = int(env['FLAGS_selected_gpus']) else: device_id = 0 place = fluid.CUDAPlace(device_id) if cfg.use_gpu else fluid.CPUPlace() exe = fluid.Executor(place) lr_builder = create('LearningRate') optim_builder = create('OptimizerBuilder') # build program startup_prog = fluid.Program() train_prog = fluid.Program() if FLAGS.enable_ce: startup_prog.random_seed = 1000 train_prog.random_seed = 1000 with fluid.program_guard(train_prog, startup_prog): with fluid.unique_name.guard(): model = create(main_arch) if FLAGS.fp16: assert (getattr(model.backbone, 'norm_type', None) != 'affine_channel'), \ '--fp16 currently does not support affine channel, ' \ ' please modify backbone settings to use batch norm' with mixed_precision_context(FLAGS.loss_scale, FLAGS.fp16) as ctx: inputs_def = cfg['TrainReader']['inputs_def'] feed_vars, train_loader = model.build_inputs(**inputs_def) train_fetches = model.train(feed_vars) loss = train_fetches['loss'] if FLAGS.fp16: loss *= ctx.get_loss_scale_var() lr = lr_builder() optimizer = optim_builder(lr) dist_strategy = DistributedStrategy() sync_bn = getattr(model.backbone, 'norm_type', None) == 'sync_bn' dist_strategy.sync_batch_norm = sync_bn dist_strategy.nccl_comm_num = 1 exec_strategy = fluid.ExecutionStrategy() exec_strategy.num_threads = 3 exec_strategy.num_iteration_per_drop_scope = 30 dist_strategy.exec_strategy = exec_strategy dist_strategy.fuse_all_reduce_ops = True optimizer = fleet.distributed_optimizer( optimizer, strategy=dist_strategy) # new line 5 optimizer.minimize(loss) if FLAGS.fp16: loss /= ctx.get_loss_scale_var() if 'use_ema' in cfg and cfg['use_ema']: global_steps = _decay_step_counter() ema = ExponentialMovingAverage( cfg['ema_decay'], thres_steps=global_steps) ema.update() # parse train fetches train_keys, train_values, _ = parse_fetches(train_fetches) train_values.append(lr) if FLAGS.eval: eval_prog = fluid.Program() with fluid.program_guard(eval_prog, startup_prog): with fluid.unique_name.guard(): model = create(main_arch) inputs_def = cfg['EvalReader']['inputs_def'] feed_vars, eval_loader = model.build_inputs(**inputs_def) fetches = model.eval(feed_vars) eval_prog = eval_prog.clone(True) eval_reader = create_reader(cfg.EvalReader, devices_num=1) # When iterable mode, set set_sample_list_generator(eval_reader, place) eval_loader.set_sample_list_generator(eval_reader) # parse eval fetches extra_keys = [] if cfg.metric == 'COCO': extra_keys = ['im_info', 'im_id', 'im_shape'] if cfg.metric == 'VOC': extra_keys = ['gt_bbox', 'gt_class', 'is_difficult'] if cfg.metric == 'WIDERFACE': extra_keys = ['im_id', 'im_shape', 'gt_bbox'] eval_keys, eval_values, eval_cls = parse_fetches(fetches, eval_prog, extra_keys) exe.run(startup_prog) if FLAGS.eval: compiled_eval_prog = fluid.CompiledProgram(eval_prog) fuse_bn = getattr(model.backbone, 'norm_type', None) == 'affine_channel' ignore_params = cfg.finetune_exclude_pretrained_params \ if 'finetune_exclude_pretrained_params' in cfg else [] start_iter = 0 if FLAGS.resume_checkpoint: checkpoint.load_checkpoint(exe, train_prog, FLAGS.resume_checkpoint) start_iter = checkpoint.global_step() elif cfg.pretrain_weights and fuse_bn and not ignore_params: checkpoint.load_and_fusebn(exe, train_prog, cfg.pretrain_weights) elif cfg.pretrain_weights: checkpoint.load_params( exe, train_prog, cfg.pretrain_weights, ignore_params=ignore_params) train_reader = create_reader( cfg.TrainReader, (cfg.max_iters - start_iter) * devices_num, cfg, devices_num=devices_num) # When iterable mode, set set_sample_list_generator(train_reader, place) train_loader.set_sample_list_generator(train_reader) # whether output bbox is normalized in model output layer is_bbox_normalized = False if hasattr(model, 'is_bbox_normalized') and \ callable(model.is_bbox_normalized): is_bbox_normalized = model.is_bbox_normalized() # if map_type not set, use default 11point, only use in VOC eval map_type = cfg.map_type if 'map_type' in cfg else '11point' train_stats = TrainingStats(cfg.log_iter, train_keys) train_loader.start() start_time = time.time() end_time = time.time() cfg_name = os.path.basename(FLAGS.config).split('.')[0] save_dir = os.path.join(cfg.save_dir, cfg_name) time_stat = deque(maxlen=cfg.log_iter) best_box_ap_list = [0.0, 0] #[map, iter] # use VisualDL to log data if FLAGS.use_vdl: assert six.PY3, "VisualDL requires Python >= 3.5" from visualdl import LogWriter vdl_writer = LogWriter(FLAGS.vdl_log_dir) vdl_loss_step = 0 vdl_mAP_step = 0 for it in range(start_iter, cfg.max_iters): start_time = end_time end_time = time.time() time_stat.append(end_time - start_time) time_cost = np.mean(time_stat) eta_sec = (cfg.max_iters - it) * time_cost eta = str(datetime.timedelta(seconds=int(eta_sec))) outs = exe.run(train_prog, fetch_list=train_values) stats = {k: np.array(v).mean() for k, v in zip(train_keys, outs[:-1])} # use vdl-paddle to log loss if FLAGS.use_vdl: if it % cfg.log_iter == 0: for loss_name, loss_value in stats.items(): vdl_writer.add_scalar(loss_name, loss_value, vdl_loss_step) vdl_loss_step += 1 train_stats.update(stats) logs = train_stats.log() if it % cfg.log_iter == 0 and trainer_id == 0: strs = 'iter: {}, lr: {:.6f}, {}, time: {:.3f}, eta: {}'.format( it, np.mean(outs[-1]), logs, time_cost, eta) logger.info(strs) # NOTE : profiler tools, used for benchmark if FLAGS.is_profiler and it == 5: profiler.start_profiler("All") elif FLAGS.is_profiler and it == 10: profiler.stop_profiler("total", FLAGS.profiler_path) return if (it > 0 and it % cfg.snapshot_iter == 0 or it == cfg.max_iters - 1) \ and trainer_id == 0: save_name = str(it) if it != cfg.max_iters - 1 else "model_final" if 'use_ema' in cfg and cfg['use_ema']: exe.run(ema.apply_program) checkpoint.save(exe, train_prog, os.path.join(save_dir, save_name)) if FLAGS.eval: # evaluation resolution = None if 'Mask' in cfg.architecture: resolution = model.mask_head.resolution results = eval_run( exe, compiled_eval_prog, eval_loader, eval_keys, eval_values, eval_cls, cfg, resolution=resolution) box_ap_stats = eval_results( results, cfg.metric, cfg.num_classes, resolution, is_bbox_normalized, FLAGS.output_eval, map_type, cfg['EvalReader']['dataset']) # use vdl_paddle to log mAP if FLAGS.use_vdl: vdl_writer.add_scalar("mAP", box_ap_stats[0], vdl_mAP_step) vdl_mAP_step += 1 if box_ap_stats[0] > best_box_ap_list[0]: best_box_ap_list[0] = box_ap_stats[0] best_box_ap_list[1] = it checkpoint.save(exe, train_prog, os.path.join(save_dir, "best_model")) logger.info("Best test box ap: {}, in iter: {}".format( best_box_ap_list[0], best_box_ap_list[1])) if 'use_ema' in cfg and cfg['use_ema']: exe.run(ema.restore_program) train_loader.reset() if __name__ == '__main__': enable_static_mode() parser = ArgsParser() parser.add_argument( "-r", "--resume_checkpoint", default=None, type=str, help="Checkpoint path for resuming training.") parser.add_argument( "--fp16", action='store_true', default=False, help="Enable mixed precision training.") parser.add_argument( "--loss_scale", default=8., type=float, help="Mixed precision training loss scale.") parser.add_argument( "--eval", action='store_true', default=False, help="Whether to perform evaluation in train") parser.add_argument( "--output_eval", default=None, type=str, help="Evaluation directory, default is current directory.") parser.add_argument( "--use_vdl", type=bool, default=False, help="whether to record the data to VisualDL.") parser.add_argument( '--vdl_log_dir', type=str, default="vdl_log_dir/scalar", help='VisualDL logging directory for scalar.') parser.add_argument( "--enable_ce", type=bool, default=False, help="If set True, enable continuous evaluation job." "This flag is only used for internal test.") #NOTE:args for profiler tools, used for benchmark parser.add_argument( '--is_profiler', type=int, default=0, help='The switch of profiler tools. (used for benchmark)') parser.add_argument( '--profiler_path', type=str, default="./detection.profiler", help='The profiler output file path. (used for benchmark)') FLAGS = parser.parse_args() main()