architecture: SSD use_gpu: true max_iters: 400000 snapshot_iter: 20000 log_iter: 20 metric: COCO pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_large_x1_0_ssld_pretrained.tar save_dir: output weights: output/ssdlite_mobilenet_v3_large/model_final # 80(label_class) + 1(background) num_classes: 81 SSD: backbone: MobileNetV3 multi_box_head: SSDLiteMultiBoxHead output_decoder: background_label: 0 keep_top_k: 200 nms_eta: 1.0 nms_threshold: 0.45 nms_top_k: 400 score_threshold: 0.01 MobileNetV3: scale: 1.0 model_name: large extra_block_filters: [[256, 512], [128, 256], [128, 256], [64, 128]] feature_maps: [5, 7, 8, 9, 10, 11] lr_mult_list: [0.25, 0.25, 0.5, 0.5, 0.75] conv_decay: 0.00004 multiplier: 0.5 SSDLiteMultiBoxHead: aspect_ratios: [[2.], [2., 3.], [2., 3.], [2., 3.], [2., 3.], [2., 3.]] base_size: 320 steps: [16, 32, 64, 107, 160, 320] flip: true clip: true max_ratio: 95 min_ratio: 20 offset: 0.5 conv_decay: 0.00004 LearningRate: base_lr: 0.4 schedulers: - !CosineDecay max_iters: 400000 - !LinearWarmup start_factor: 0.33333 steps: 2000 OptimizerBuilder: optimizer: momentum: 0.9 type: Momentum regularizer: factor: 0.0005 type: L2 TrainReader: inputs_def: image_shape: [3, 320, 320] fields: ['image', 'gt_bbox', 'gt_class'] dataset: !COCODataSet dataset_dir: dataset/coco anno_path: annotations/instances_train2017.json image_dir: train2017 sample_transforms: - !DecodeImage to_rgb: true - !RandomDistort brightness_lower: 0.875 brightness_upper: 1.125 is_order: true - !RandomExpand fill_value: [123.675, 116.28, 103.53] - !RandomCrop allow_no_crop: false - !NormalizeBox {} - !ResizeImage interp: 1 target_size: 320 use_cv2: false - !RandomFlipImage is_normalized: false - !NormalizeImage mean: [0.485, 0.456, 0.406] std: [0.229, 0.224, 0.225] is_scale: true is_channel_first: false - !Permute to_bgr: false channel_first: true batch_size: 64 shuffle: true drop_last: true # Number of working threads/processes. To speed up, can be set to 16 or 32 etc. worker_num: 8 # Size of shared memory used in result queue. After increasing `worker_num`, need expand `memsize`. memsize: 8G # Buffer size for multi threads/processes.one instance in buffer is one batch data. # To speed up, can be set to 64 or 128 etc. bufsize: 32 use_process: true EvalReader: inputs_def: image_shape: [3, 320, 320] fields: ['image', 'gt_bbox', 'gt_class', 'im_shape', 'im_id'] dataset: !COCODataSet dataset_dir: dataset/coco anno_path: annotations/instances_val2017.json image_dir: val2017 sample_transforms: - !DecodeImage to_rgb: true - !NormalizeBox {} - !ResizeImage interp: 1 target_size: 320 use_cv2: false - !NormalizeImage mean: [0.485, 0.456, 0.406] std: [0.229, 0.224, 0.225] is_scale: true is_channel_first: false - !Permute to_bgr: false channel_first: True batch_size: 8 worker_num: 8 bufsize: 32 use_process: false TestReader: inputs_def: image_shape: [3,320,320] fields: ['image', 'im_id', 'im_shape'] dataset: !ImageFolder anno_path: annotations/instances_val2017.json sample_transforms: - !DecodeImage to_rgb: true - !ResizeImage interp: 1 max_size: 0 target_size: 320 use_cv2: true - !NormalizeImage mean: [0.485, 0.456, 0.406] std: [0.229, 0.224, 0.225] is_scale: true is_channel_first: false - !Permute to_bgr: false channel_first: True batch_size: 1