architecture: SOLOv2 use_gpu: true max_iters: 270000 snapshot_iter: 30000 log_smooth_window: 20 save_dir: output pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/ResNet101_vd_pretrained.tar metric: COCO weights: output/solov2_r101_vd_fpn_3x/model_final num_classes: 81 use_ema: true ema_decay: 0.9998 SOLOv2: backbone: ResNet fpn: FPN bbox_head: SOLOv2Head mask_head: SOLOv2MaskHead ResNet: depth: 101 feature_maps: [2, 3, 4, 5] freeze_at: 2 norm_type: bn dcn_v2_stages: [3, 4, 5] variant: d FPN: max_level: 6 min_level: 2 num_chan: 256 spatial_scale: [0.03125, 0.0625, 0.125, 0.25] reverse_out: True SOLOv2Head: seg_feat_channels: 512 stacked_convs: 4 num_grids: [40, 36, 24, 16, 12] kernel_out_channels: 256 solov2_loss: SOLOv2Loss mask_nms: MaskMatrixNMS dcn_v2_stages: [0, 1, 2, 3] SOLOv2MaskHead: in_channels: 128 out_channels: 256 start_level: 0 end_level: 3 use_dcn_in_tower: True SOLOv2Loss: ins_loss_weight: 3.0 focal_loss_gamma: 2.0 focal_loss_alpha: 0.25 MaskMatrixNMS: pre_nms_top_n: 500 post_nms_top_n: 100 LearningRate: base_lr: 0.01 schedulers: - !PiecewiseDecay gamma: 0.1 milestones: [180000, 240000] - !LinearWarmup start_factor: 0. steps: 1000 OptimizerBuilder: optimizer: momentum: 0.9 type: Momentum regularizer: factor: 0.0001 type: L2 _READER_: 'solov2_reader.yml' TrainReader: batch_size: 2 sample_transforms: - !DecodeImage to_rgb: true - !Poly2Mask {} - !ResizeImage target_size: [640, 672, 704, 736, 768, 800] max_size: 1333 interp: 1 use_cv2: true resize_box: true - !RandomFlipImage prob: 0.5 - !NormalizeImage is_channel_first: false is_scale: true mean: [0.485,0.456,0.406] std: [0.229, 0.224,0.225] - !Permute to_bgr: false channel_first: true batch_transforms: - !PadBatch pad_to_stride: 32 - !Gt2Solov2Target num_grids: [40, 36, 24, 16, 12] scale_ranges: [[1, 96], [48, 192], [96, 384], [192, 768], [384, 2048]] coord_sigma: 0.2