architecture: SOLOv2 use_gpu: true max_iters: 135000 snapshot_iter: 20000 log_smooth_window: 20 save_dir: output pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_large_x1_0_ssld_pretrained.tar metric: COCO weights: output/solov2/solov2_mobilenetv3_fpn_448_3x/model_final num_classes: 81 use_ema: true ema_decay: 0.9998 SOLOv2: backbone: MobileNetV3RCNN fpn: FPN bbox_head: SOLOv2Head mask_head: SOLOv2MaskHead MobileNetV3RCNN: norm_type: bn freeze_norm: true norm_decay: 0.0 feature_maps: [2, 3, 4, 6] conv_decay: 0.00001 lr_mult_list: [0.25, 0.25, 0.5, 0.5, 0.75] scale: 1.0 model_name: large FPN: max_level: 6 min_level: 2 num_chan: 256 spatial_scale: [0.03125, 0.0625, 0.125, 0.25] reverse_out: True SOLOv2Head: seg_feat_channels: 256 stacked_convs: 2 num_grids: [40, 36, 24, 16, 12] kernel_out_channels: 128 solov2_loss: SOLOv2Loss mask_nms: MaskMatrixNMS drop_block: True SOLOv2MaskHead: in_channels: 128 out_channels: 128 start_level: 0 end_level: 3 SOLOv2Loss: ins_loss_weight: 3.0 focal_loss_gamma: 2.0 focal_loss_alpha: 0.25 MaskMatrixNMS: pre_nms_top_n: 500 post_nms_top_n: 100 LearningRate: base_lr: 0.02 schedulers: - !PiecewiseDecay gamma: 0.1 milestones: [90000, 120000] - !LinearWarmup start_factor: 0. steps: 1000 OptimizerBuilder: optimizer: momentum: 0.9 type: Momentum regularizer: factor: 0.0001 type: L2 _READER_: 'solov2_light_448_reader.yml'