architecture: FasterRCNN max_iters: 180000 snapshot_iter: 10000 use_gpu: true log_iter: 20 save_dir: output pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_cos_pretrained.tar metric: COCO weights: output/faster_rcnn_r50_fpn_gn/model_final num_classes: 81 FasterRCNN: backbone: ResNet fpn: FPN rpn_head: FPNRPNHead roi_extractor: FPNRoIAlign bbox_head: BBoxHead bbox_assigner: BBoxAssigner ResNet: depth: 50 feature_maps: [2, 3, 4, 5] freeze_at: 2 norm_type: affine_channel FPN: min_level: 2 max_level: 6 num_chan: 256 spatial_scale: [0.03125, 0.0625, 0.125, 0.25] norm_type: gn FPNRPNHead: anchor_generator: anchor_sizes: [32, 64, 128, 256, 512] aspect_ratios: [0.5, 1.0, 2.0] stride: [16.0, 16.0] variance: [1.0, 1.0, 1.0, 1.0] anchor_start_size: 32 min_level: 2 max_level: 6 num_chan: 256 rpn_target_assign: rpn_batch_size_per_im: 256 rpn_fg_fraction: 0.5 rpn_positive_overlap: 0.7 rpn_negative_overlap: 0.3 rpn_straddle_thresh: 0.0 train_proposal: min_size: 0.0 nms_thresh: 0.7 pre_nms_top_n: 2000 post_nms_top_n: 2000 test_proposal: min_size: 0.0 nms_thresh: 0.7 pre_nms_top_n: 1000 post_nms_top_n: 1000 FPNRoIAlign: canconical_level: 4 canonical_size: 224 min_level: 2 max_level: 5 box_resolution: 7 sampling_ratio: 2 BBoxAssigner: batch_size_per_im: 512 bbox_reg_weights: [0.1, 0.1, 0.2, 0.2] bg_thresh_lo: 0.0 bg_thresh_hi: 0.5 fg_fraction: 0.25 fg_thresh: 0.5 BBoxHead: head: XConvNormHead nms: keep_top_k: 100 nms_threshold: 0.5 score_threshold: 0.05 XConvNormHead: norm_type: gn LearningRate: base_lr: 0.02 schedulers: - !PiecewiseDecay gamma: 0.1 milestones: [120000, 160000] - !LinearWarmup start_factor: 0.1 steps: 1000 OptimizerBuilder: optimizer: momentum: 0.9 type: Momentum regularizer: factor: 0.0001 type: L2 _READER_: '../faster_fpn_reader.yml' TrainReader: batch_size: 2