# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import numpy as np import paddle.fluid.core as core from op_test import OpTest class TestElementwiseAddOp(OpTest): def init_kernel_type(self): self.use_mkldnn = False def setUp(self): self.op_type = "elementwise_add" self.dtype = np.float32 self.axis = -1 self.init_dtype() self.init_input_output() self.init_kernel_type() self.init_axis() self.inputs = { 'X': OpTest.np_dtype_to_fluid_dtype(self.x), 'Y': OpTest.np_dtype_to_fluid_dtype(self.y) } self.attrs = {'axis': self.axis, 'use_mkldnn': self.use_mkldnn} self.outputs = {'Out': self.out} def test_check_output(self): self.check_output() def test_check_grad_normal(self): if self.dtype == np.float16: return self.check_grad(['X', 'Y'], 'Out', max_relative_error=0.005) def test_check_grad_ingore_x(self): if self.dtype == np.float16: return self.check_grad( ['Y'], 'Out', max_relative_error=0.005, no_grad_set=set("X")) def test_check_grad_ingore_y(self): if self.dtype == np.float16: return self.check_grad( ['X'], 'Out', max_relative_error=0.005, no_grad_set=set('Y')) def init_input_output(self): self.x = np.random.uniform(0.1, 1, [13, 17]).astype(self.dtype) self.y = np.random.uniform(0.1, 1, [13, 17]).astype(self.dtype) self.out = np.add(self.x, self.y) def init_dtype(self): pass def init_axis(self): pass class TestFP16ElementwiseAddOp(TestElementwiseAddOp): def init_dtype(self): self.dtype = np.float16 def test_check_output(self): if core.is_compiled_with_cuda(): place = core.CUDAPlace(0) if core.is_float16_supported(place): self.check_output_with_place(place, atol=1e-3) class TestElementwiseAddOp_scalar(TestElementwiseAddOp): def init_input_output(self): self.x = np.random.rand(2, 3, 4).astype(self.dtype) self.y = np.random.rand(1).astype(self.dtype) self.out = self.x + self.y class TestFP16ElementwiseAddOp_scalar(TestFP16ElementwiseAddOp): def init_input_output(self): self.x = np.random.rand(2, 3, 4).astype(self.dtype) self.y = np.random.rand(1).astype(self.dtype) self.out = self.x + self.y class TestElementwiseAddOp_scalar2(TestElementwiseAddOp): def init_input_output(self): self.x = np.random.rand(2, 3, 4).astype(self.dtype) self.y = np.random.rand(1, 1).astype(self.dtype) self.out = self.x + self.y class TestFP16ElementwiseAddOp_scalar2(TestFP16ElementwiseAddOp): def init_input_output(self): self.x = np.random.rand(2, 3, 4).astype(self.dtype) self.y = np.random.rand(1, 1).astype(self.dtype) self.out = self.x + self.y class TestElementwiseAddOp_Vector(TestElementwiseAddOp): def init_input_output(self): self.x = np.random.random((32, )).astype(self.dtype) self.y = np.random.random((32, )).astype(self.dtype) self.out = np.add(self.x, self.y) class TestFP16ElementwiseAddOp_Vector(TestFP16ElementwiseAddOp): def init_input_output(self): self.x = np.random.random((32, )).astype(self.dtype) self.y = np.random.random((32, )).astype(self.dtype) self.out = np.add(self.x, self.y) class TestElementwiseAddOp_broadcast_0(TestElementwiseAddOp): def init_input_output(self): self.x = np.random.rand(2, 3, 4).astype(self.dtype) self.y = np.random.rand(2).astype(self.dtype) self.out = self.x + self.y.reshape(2, 1, 1) def init_axis(self): self.axis = 0 class TestFP16ElementwiseAddOp_broadcast_0(TestFP16ElementwiseAddOp): def init_input_output(self): self.x = np.random.rand(2, 3, 4).astype(self.dtype) self.y = np.random.rand(2).astype(self.dtype) self.out = self.x + self.y.reshape(2, 1, 1) def init_axis(self): self.axis = 0 class TestElementwiseAddOp_broadcast_1(TestElementwiseAddOp): def init_input_output(self): self.x = np.random.rand(2, 3, 4).astype(self.dtype) self.y = np.random.rand(3).astype(self.dtype) self.out = self.x + self.y.reshape(1, 3, 1) def init_axis(self): self.axis = 1 class TestFP16ElementwiseAddOp_broadcast_1(TestFP16ElementwiseAddOp): def init_input_output(self): self.x = np.random.rand(2, 3, 4).astype(self.dtype) self.y = np.random.rand(3).astype(self.dtype) self.out = self.x + self.y.reshape(1, 3, 1) def init_axis(self): self.axis = 1 class TestElementwiseAddOp_broadcast_2(TestElementwiseAddOp): def init_input_output(self): self.x = np.random.rand(2, 3, 4).astype(self.dtype) self.y = np.random.rand(4).astype(self.dtype) self.out = self.x + self.y.reshape(1, 1, 4) class TestFP16ElementwiseAddOp_broadcast_2(TestFP16ElementwiseAddOp): def init_input_output(self): self.x = np.random.rand(2, 3, 4).astype(self.dtype) self.y = np.random.rand(4).astype(self.dtype) self.out = self.x + self.y.reshape(1, 1, 4) class TestElementwiseAddOp_broadcast_3(TestElementwiseAddOp): def init_input_output(self): self.x = np.random.rand(2, 3, 4, 5).astype(self.dtype) self.y = np.random.rand(3, 4).astype(self.dtype) self.out = self.x + self.y.reshape(1, 3, 4, 1) def init_axis(self): self.axis = 1 class TestFP16ElementwiseAddOp_broadcast_3(TestFP16ElementwiseAddOp): def init_input_output(self): self.x = np.random.rand(2, 3, 4, 5).astype(self.dtype) self.y = np.random.rand(3, 4).astype(self.dtype) self.out = self.x + self.y.reshape(1, 3, 4, 1) def init_axis(self): self.axis = 1 class TestElementwiseAddOp_broadcast_4(TestElementwiseAddOp): def init_input_output(self): self.x = np.random.rand(2, 3, 4, 5).astype(self.dtype) self.y = np.random.rand(2, 1).astype(self.dtype) self.out = self.x + self.y.reshape(2, 1, 1, 1) def init_axis(self): self.axis = 0 class TestFP16ElementwiseAddOp_broadcast_4(TestFP16ElementwiseAddOp): def init_input_output(self): self.x = np.random.rand(2, 3, 4, 5).astype(self.dtype) self.y = np.random.rand(2, 1).astype(self.dtype) self.out = self.x + self.y.reshape(2, 1, 1, 1) def init_axis(self): self.axis = 0 class TestElementwiseAddOp_rowwise_add_0(TestElementwiseAddOp): def init_input_output(self): self.x = np.random.rand(2, 3, 4).astype(self.dtype) self.y = np.random.rand(3, 4).astype(self.dtype) self.out = self.x + self.y.reshape(1, 3, 4) def init_axis(self): self.axis = 1 class TestFP16ElementwiseAddOp_rowwise_add_0(TestFP16ElementwiseAddOp): def init_input_output(self): self.x = np.random.rand(2, 3, 4).astype(self.dtype) self.y = np.random.rand(3, 4).astype(self.dtype) self.out = self.x + self.y.reshape(1, 3, 4) def init_axis(self): self.axis = 1 class TestElementwiseAddOp_rowwise_add_1(TestElementwiseAddOp): def init_input_output(self): self.x = np.random.rand(2, 1).astype(self.dtype) self.y = np.random.rand(1).astype(self.dtype) self.out = self.x + self.y.reshape(1, 1) def init_axis(self): self.axis = 1 class TestFP16ElementwiseAddOp_rowwise_add_1(TestFP16ElementwiseAddOp): def init_input_output(self): self.x = np.random.rand(2, 1).astype(self.dtype) self.y = np.random.rand(1).astype(self.dtype) self.out = self.x + self.y.reshape(1, 1) def init_axis(self): self.axis = 1 class TestElementwiseAddOp_channelwise_add(TestElementwiseAddOp): def init_input_output(self): self.x = np.random.rand(3, 20, 20).astype(self.dtype) self.y = np.random.rand(3, 1, 1).astype(self.dtype) self.out = self.x + self.y def init_axis(self): self.axis = -1 class TestFP16ElementwiseAddOp_channelwise_add(TestFP16ElementwiseAddOp): def init_input_output(self): self.x = np.random.rand(3, 10, 20).astype(self.dtype) self.y = np.random.rand(3, 1, 1).astype(self.dtype) self.out = self.x + self.y def init_axis(self): self.axis = -1 if __name__ == '__main__': unittest.main()