# 服务端预测部署 `PaddleDetection`训练出来的模型可以使用[Serving](https://github.com/PaddlePaddle/Serving) 部署在服务端。 本教程以在路标数据集[roadsign_voc](https://paddlemodels.bj.bcebos.com/object_detection/roadsign_voc.tar) 使用`configs/yolov3_mobilenet_v1_roadsign.yml`算法训练的模型进行部署。 预训练模型权重文件为[yolov3_mobilenet_v1_roadsign.pdparams](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1_roadsign.pdparams) 。 ## 1. 首先验证模型 ``` python tools/infer.py -c configs/yolov3_mobilenet_v1_roadsign.yml -o use_gpu=true weights=https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1_roadsign.pdparams --infer_img=demo/road554.png ``` ## 2. 安装 paddle serving ``` # 安装 paddle-serving-client pip install paddle-serving-client -i https://mirror.baidu.com/pypi/simple # 安装 paddle-serving-server pip install paddle-serving-server -i https://mirror.baidu.com/pypi/simple # 安装 paddle-serving-server-gpu pip install paddle-serving-server-gpu -i https://mirror.baidu.com/pypi/simple ``` ## 3. 导出模型 PaddleDetection在训练过程包括网络的前向和优化器相关参数,而在部署过程中,我们只需要前向参数,具体参考:[导出模型](https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.1/static/docs/advanced_tutorials/deploy/EXPORT_MODEL.md) ``` python tools/export_serving_model.py -c configs/yolov3_mobilenet_v1_roadsign.yml -o use_gpu=true weights=https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1_roadsign.pdparams --output_dir=./inference_model ``` 以上命令会在./inference_model文件夹下生成一个`yolov3_mobilenet_v1_roadsign`文件夹: ``` inference_model │ ├── yolov3_mobilenet_v1_roadsign │ │ ├── infer_cfg.yml │ │ ├── serving_client │ │ │ ├── serving_client_conf.prototxt │ │ │ ├── serving_client_conf.stream.prototxt │ │ ├── serving_server │ │ │ ├── conv1_bn_mean │ │ │ ├── conv1_bn_offset │ │ │ ├── conv1_bn_scale │ │ │ ├── ... ``` `serving_client`文件夹下`serving_client_conf.prototxt`详细说明了模型输入输出信息 `serving_client_conf.prototxt`文件内容为: ``` feed_var { name: "image" alias_name: "image" is_lod_tensor: false feed_type: 1 shape: 3 shape: 608 shape: 608 } feed_var { name: "im_size" alias_name: "im_size" is_lod_tensor: false feed_type: 2 shape: 2 } fetch_var { name: "multiclass_nms_0.tmp_0" alias_name: "multiclass_nms_0.tmp_0" is_lod_tensor: true fetch_type: 1 shape: -1 } ``` ## 4. 启动PaddleServing服务 ``` cd inference_model/yolov3_mobilenet_v1_roadsign/ # GPU python -m paddle_serving_server_gpu.serve --model serving_server --port 9393 --gpu_ids 0 # CPU python -m paddle_serving_server.serve --model serving_server --port 9393 ``` ## 5. 测试部署的服务 准备`label_list.txt`文件 ``` # 进入到导出模型文件夹 cd inference_model/yolov3_mobilenet_v1_roadsign/ # 将数据集对应的label_list.txt文件拷贝到当前文件夹下 cp ../../dataset/roadsign_voc/label_list.txt . ``` 设置`prototxt`文件路径为`serving_client/serving_client_conf.prototxt` 。 设置`fetch`为`fetch=["multiclass_nms_0.tmp_0"])` 测试 ``` # 进入目录 cd inference_model/yolov3_mobilenet_v1_roadsign/ # 测试代码 test_client.py 会自动创建output文件夹,并在output下生成`bbox.json`和`road554.png`两个文件 python ../../deploy/serving/test_client.py ../../demo/road554.png ```