# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function from ppdet.core.workspace import register, create from .meta_arch import BaseArch __all__ = ['CenterNet'] @register class CenterNet(BaseArch): """ CenterNet network, see http://arxiv.org/abs/1904.07850 Args: backbone (object): backbone instance neck (object): FPN instance, default use 'CenterNetDLAFPN' head (object): 'CenterNetHead' instance post_process (object): 'CenterNetPostProcess' instance for_mot (bool): whether return other features used in tracking model """ __category__ = 'architecture' __inject__ = ['post_process'] __shared__ = ['for_mot'] def __init__(self, backbone, neck='CenterNetDLAFPN', head='CenterNetHead', post_process='CenterNetPostProcess', for_mot=False): super(CenterNet, self).__init__() self.backbone = backbone self.neck = neck self.head = head self.post_process = post_process self.for_mot = for_mot @classmethod def from_config(cls, cfg, *args, **kwargs): backbone = create(cfg['backbone']) kwargs = {'input_shape': backbone.out_shape} neck = cfg['neck'] and create(cfg['neck'], **kwargs) out_shape = neck and neck.out_shape or backbone.out_shape kwargs = {'input_shape': out_shape} head = create(cfg['head'], **kwargs) return {'backbone': backbone, 'neck': neck, "head": head} def _forward(self): neck_feat = self.backbone(self.inputs) if self.neck is not None: neck_feat = self.neck(neck_feat) head_out = self.head(neck_feat, self.inputs) if self.for_mot: head_out.update({'neck_feat': neck_feat}) elif self.training: head_out['loss'] = head_out.pop('det_loss') return head_out def get_pred(self): head_out = self._forward() if self.for_mot: bbox, bbox_inds = self.post_process( head_out['heatmap'], head_out['size'], head_out['offset'], im_shape=self.inputs['im_shape'], scale_factor=self.inputs['scale_factor']) output = { "bbox": bbox, "bbox_inds": bbox_inds, "neck_feat": head_out['neck_feat'] } else: bbox, bbox_num = self.post_process( head_out['heatmap'], head_out['size'], head_out['offset'], im_shape=self.inputs['im_shape'], scale_factor=self.inputs['scale_factor']) output = { "bbox": bbox, "bbox_num": bbox_num, } return output def get_loss(self): return self._forward()