/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/fluid/operators/math/sequence_pooling.h" #include #include template void TestSequencePoolingSum(const paddle::framework::LoD& lod) { paddle::framework::LoDTensor cpu_out_grad; paddle::framework::LoDTensor cpu_in_grad; paddle::framework::LoDTensor out_grad; paddle::framework::LoDTensor in_grad; const size_t second_dim = 128u; // construct out_grad's tensor in cpu const size_t out_first_dim = lod[0].size() - 1; auto out_dims = paddle::framework::make_ddim( {static_cast(out_first_dim), static_cast(second_dim)}); cpu_out_grad.mutable_data(out_dims, paddle::platform::CPUPlace()); for (int64_t i = 0; i < cpu_out_grad.numel(); ++i) { cpu_out_grad.data()[i] = static_cast(i); } // copy to dst out_grad auto* place = new Place(); DeviceContext* context = new DeviceContext(*place); if (paddle::platform::is_cpu_place(*place)) { out_grad = cpu_out_grad; } else { TensorCopySync(cpu_out_grad, *place, &out_grad); } // construct in_grad in_grad.set_lod(lod); auto in_dims = paddle::framework::make_ddim( {static_cast(lod[0].back()), static_cast(second_dim)}); in_grad.mutable_data(in_dims, context->GetPlace()); // check tensor contruction result PADDLE_ENFORCE_EQ(in_grad.dims().size(), out_grad.dims().size()); for (int64_t i = 1; i < out_grad.dims().size(); ++i) { PADDLE_ENFORCE_EQ(in_grad.dims()[i], out_grad.dims()[i]); } // call functor paddle::operators::math::SequencePoolGradFunctor()( *context, "SUM", out_grad, &in_grad); if (paddle::platform::is_cpu_place(*place)) { cpu_in_grad = in_grad; } else { TensorCopySync(in_grad, paddle::platform::CPUPlace(), &cpu_in_grad); cpu_in_grad.set_lod(in_grad.lod()); } EXPECT_EQ(in_grad.numel(), lod[0].back() * second_dim); EXPECT_EQ(in_grad.lod(), lod); if (paddle::platform::is_cpu_place(*place)) { for (int64_t i = 0; i < in_grad.lod()[0].size() - 1; ++i) { int64_t begin = in_grad.lod()[0][i]; int64_t end = in_grad.lod()[0][i + 1]; paddle::framework::Tensor tmp = in_grad.Slice(begin, end); for (int64_t j = 0; j != tmp.numel() / second_dim; ++j) { for (int64_t m = 0; m != second_dim; ++m) { EXPECT_EQ(tmp.data()[m + j * second_dim], out_grad.data()[m + i * second_dim]); } } } } else { for (int64_t i = 0; i < cpu_in_grad.lod()[0].size() - 1; ++i) { int64_t begin = cpu_in_grad.lod()[0][i]; int64_t end = cpu_in_grad.lod()[0][i + 1]; paddle::framework::Tensor tmp = cpu_in_grad.Slice(begin, end); for (int64_t j = 0; j != tmp.numel() / second_dim; ++j) { for (int64_t m = 0; m != second_dim; ++m) { EXPECT_EQ(tmp.data()[m + j * second_dim], cpu_out_grad.data()[m + i * second_dim]); } } } } delete place; delete context; } TEST(SequencePoolingGrad, CPU_SUM) { paddle::framework::LoD lod1; lod1.push_back(std::vector{0, 10}); TestSequencePoolingSum(lod1); paddle::framework::LoD lod2; lod2.push_back(std::vector{0, 2, 7, 10}); TestSequencePoolingSum(lod2); } #ifdef PADDLE_WITH_CUDA TEST(SequencePoolingGrad, CUDA_SUM) { paddle::framework::LoD lod1; lod1.push_back(std::vector{0, 10}); TestSequencePoolingSum(lod1); paddle::framework::LoD lod2; lod2.push_back(std::vector{0, 2, 7, 10}); TestSequencePoolingSum(lod2); } #endif