architecture: MaskRCNN pretrain_weights: https://paddledet.bj.bcebos.com/models/pretrained/ResNet50_cos_pretrained.pdparams MaskRCNN: backbone: ResNet rpn_head: RPNHead bbox_head: BBoxHead mask_head: MaskHead # post process bbox_post_process: BBoxPostProcess mask_post_process: MaskPostProcess ResNet: # index 0 stands for res2 depth: 50 norm_type: bn freeze_at: 0 return_idx: [2] num_stages: 3 RPNHead: anchor_generator: aspect_ratios: [0.5, 1.0, 2.0] anchor_sizes: [32, 64, 128, 256, 512] strides: [16] rpn_target_assign: batch_size_per_im: 256 fg_fraction: 0.5 negative_overlap: 0.3 positive_overlap: 0.7 use_random: True train_proposal: min_size: 0.0 nms_thresh: 0.7 pre_nms_top_n: 12000 post_nms_top_n: 2000 topk_after_collect: False test_proposal: min_size: 0.0 nms_thresh: 0.7 pre_nms_top_n: 6000 post_nms_top_n: 1000 BBoxHead: head: Res5Head roi_extractor: resolution: 14 sampling_ratio: 0 aligned: True bbox_assigner: BBoxAssigner with_pool: true BBoxAssigner: batch_size_per_im: 512 bg_thresh: 0.5 fg_thresh: 0.5 fg_fraction: 0.25 use_random: True BBoxPostProcess: decode: RCNNBox nms: name: MultiClassNMS keep_top_k: 100 score_threshold: 0.05 nms_threshold: 0.5 MaskHead: head: MaskFeat roi_extractor: resolution: 14 sampling_ratio: 0 aligned: True mask_assigner: MaskAssigner share_bbox_feat: true MaskFeat: num_convs: 0 out_channel: 256 MaskAssigner: mask_resolution: 14 MaskPostProcess: binary_thresh: 0.5