# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import argparse import time import yaml import ast from functools import reduce from PIL import Image import cv2 import numpy as np import glob import paddle from preprocess import preprocess, Resize, NormalizeImage, Permute, PadStride from visualize import visualize_box_mask from paddle.inference import Config from paddle.inference import create_predictor # Global dictionary SUPPORT_MODELS = { 'YOLO', 'RCNN', 'SSD', 'FCOS', 'SOLOv2', 'TTFNet', } class Detector(object): """ Args: config (object): config of model, defined by `Config(model_dir)` model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml use_gpu (bool): whether use gpu """ def __init__(self, pred_config, model_dir, use_gpu=False): self.pred_config = pred_config self.predictor = load_predictor( model_dir, min_subgraph_size=self.pred_config.min_subgraph_size, use_gpu=use_gpu) def preprocess(self, im): preprocess_ops = [] for op_info in self.pred_config.preprocess_infos: new_op_info = op_info.copy() op_type = new_op_info.pop('type') preprocess_ops.append(eval(op_type)(**new_op_info)) im, im_info = preprocess(im, preprocess_ops, self.pred_config.input_shape) inputs = create_inputs(im, im_info) return inputs def postprocess(self, np_boxes, np_masks, inputs, threshold=0.5): # postprocess output of predictor results = {} if self.pred_config.arch in ['Face']: h, w = inputs['im_shape'] scale_y, scale_x = inputs['scale_factor'] w, h = float(h) / scale_y, float(w) / scale_x np_boxes[:, 2] *= h np_boxes[:, 3] *= w np_boxes[:, 4] *= h np_boxes[:, 5] *= w results['boxes'] = np_boxes if np_masks is not None: results['masks'] = np_masks return results def predict(self, image, threshold=0.5, warmup=0, repeats=1, run_benchmark=False): ''' Args: image (str/np.ndarray): path of image/ np.ndarray read by cv2 threshold (float): threshold of predicted box' score Returns: results (dict): include 'boxes': np.ndarray: shape:[N,6], N: number of box, matix element:[class, score, x_min, y_min, x_max, y_max] MaskRCNN's results include 'masks': np.ndarray: shape: [N, im_h, im_w] ''' inputs = self.preprocess(image) np_boxes, np_masks = None, None input_names = self.predictor.get_input_names() for i in range(len(input_names)): input_tensor = self.predictor.get_input_handle(input_names[i]) input_tensor.copy_from_cpu(inputs[input_names[i]]) for i in range(warmup): self.predictor.run() output_names = self.predictor.get_output_names() boxes_tensor = self.predictor.get_output_handle(output_names[0]) np_boxes = boxes_tensor.copy_to_cpu() if self.pred_config.mask: masks_tensor = self.predictor.get_output_handle(output_names[2]) np_masks = masks_tensor.copy_to_cpu() t1 = time.time() for i in range(repeats): self.predictor.run() output_names = self.predictor.get_output_names() boxes_tensor = self.predictor.get_output_handle(output_names[0]) np_boxes = boxes_tensor.copy_to_cpu() if self.pred_config.mask: masks_tensor = self.predictor.get_output_handle(output_names[2]) np_masks = masks_tensor.copy_to_cpu() t2 = time.time() ms = (t2 - t1) * 1000.0 / repeats print("Inference: {} ms per batch image".format(ms)) # do not perform postprocess in benchmark mode results = [] if not run_benchmark: if reduce(lambda x, y: x * y, np_boxes.shape) < 6: print('[WARNNING] No object detected.') results = {'boxes': np.array([])} else: results = self.postprocess( np_boxes, np_masks, inputs, threshold=threshold) return results def create_inputs(im, im_info): """generate input for different model type Args: im (np.ndarray): image (np.ndarray) im_info (dict): info of image model_arch (str): model type Returns: inputs (dict): input of model """ inputs = {} inputs['image'] = np.array((im, )).astype('float32') inputs['im_shape'] = np.array((im_info['im_shape'], )).astype('float32') inputs['scale_factor'] = np.array( (im_info['scale_factor'], )).astype('float32') return inputs class PredictConfig(): """set config of preprocess, postprocess and visualize Args: model_dir (str): root path of model.yml """ def __init__(self, model_dir): # parsing Yaml config for Preprocess deploy_file = os.path.join(model_dir, 'infer_cfg.yml') with open(deploy_file) as f: yml_conf = yaml.safe_load(f) self.check_model(yml_conf) self.arch = yml_conf['arch'] self.preprocess_infos = yml_conf['Preprocess'] self.min_subgraph_size = yml_conf['min_subgraph_size'] self.labels = yml_conf['label_list'] self.mask = False if 'mask' in yml_conf: self.mask = yml_conf['mask'] self.input_shape = yml_conf['image_shape'] self.print_config() def check_model(self, yml_conf): """ Raises: ValueError: loaded model not in supported model type """ for support_model in SUPPORT_MODELS: if support_model in yml_conf['arch']: return True raise ValueError("Unsupported arch: {}, expect {}".format(yml_conf[ 'arch'], SUPPORT_MODELS)) def print_config(self): print('----------- Model Configuration -----------') print('%s: %s' % ('Model Arch', self.arch)) print('%s: ' % ('Transform Order')) for op_info in self.preprocess_infos: print('--%s: %s' % ('transform op', op_info['type'])) print('--------------------------------------------') def load_predictor(model_dir, batch_size=1, use_gpu=False, min_subgraph_size=3): """set AnalysisConfig, generate AnalysisPredictor Args: model_dir (str): root path of __model__ and __params__ use_gpu (bool): whether use gpu Returns: predictor (PaddlePredictor): AnalysisPredictor Raises: ValueError: predict by TensorRT need use_gpu == True. """ run_mode = 'trt_int8' if not use_gpu and not run_mode == 'fluid': raise ValueError( "Predict by TensorRT mode: {}, expect use_gpu==True, but use_gpu == {}" .format(run_mode, use_gpu)) config = Config( os.path.join(model_dir, 'model.pdmodel'), os.path.join(model_dir, 'model.pdiparams')) precision_map = { 'trt_int8': Config.Precision.Int8, 'trt_fp32': Config.Precision.Float32, 'trt_fp16': Config.Precision.Half } if use_gpu: # initial GPU memory(M), device ID config.enable_use_gpu(200, 0) # optimize graph and fuse op config.switch_ir_optim(True) else: config.disable_gpu() if run_mode in precision_map.keys(): config.enable_tensorrt_engine( workspace_size=1 << 10, max_batch_size=batch_size, min_subgraph_size=min_subgraph_size, precision_mode=precision_map[run_mode], use_static=False, use_calib_mode=True) # disable print log when predict config.disable_glog_info() # enable shared memory config.enable_memory_optim() # disable feed, fetch OP, needed by zero_copy_run config.switch_use_feed_fetch_ops(False) predictor = create_predictor(config) return predictor def print_arguments(args): print('----------- Running Arguments -----------') for arg, value in sorted(vars(args).items()): print('%s: %s' % (arg, value)) print('------------------------------------------') def predict_image_dir(detector): for image_file in glob.glob(FLAGS.image_dir + '/*.jpg'): print('image_file is', image_file) results = detector.predict(image_file, threshold=0.5) def main(): pred_config = PredictConfig(FLAGS.model_dir) detector = Detector(pred_config, FLAGS.model_dir, use_gpu=FLAGS.use_gpu) # predict from image if FLAGS.image_dir != '': predict_image_dir(detector) if __name__ == '__main__': paddle.enable_static() parser = argparse.ArgumentParser(description=__doc__) parser.add_argument( "--model_dir", type=str, default=None, help=("Directory include:'model.pdiparams', 'model.pdmodel', " "'infer_cfg.yml', created by tools/export_model.py."), required=True) parser.add_argument( "--image_dir", type=str, default='', help="Directory of image file.") parser.add_argument( "--use_gpu", type=ast.literal_eval, default=False, help="Whether to predict with GPU.") print('err?') parser.add_argument( "--output_dir", type=str, default="output", help="Directory of output visualization files.") FLAGS = parser.parse_args() print_arguments(FLAGS) main()